Yasm User Manual

Peter Johnson

6 okTsaOps 2014 1.

Yasm User Manual
by Peter Johnson

Published 2009
Copyright © 2006, 2007, 2008, 2009 Peter Johnson

ii

OrsiaBjenue

IT

Preface
0.1 Introduction e

0.2 License

0.3 Material Covered in this Book

Using Yasm

3amyck Yasm

CHHTAKCHC KOMAHHON CTPOKH YASIL . .« ¢ « o v v o v v e et e e et e e e e e e e e e e
1.2 OmHCAHUE o v ittt e e i e e e e
1.3 TIAapaMeTPDBI . .« . v v v vt vt e e e e e e e

1.1

14
1.5
1.6
1.7

1.3.1

1.3.2

1.3.3

OCHOBHBIE TTAPAMETPBL . « « o v o o v v e et e e e et e et e e e e e e e
1.3.1.1 -a arch winu --arch=arch: Beibop meseBoit apxuTeKTypbl
1.3.1.2 -f format min --oformat=format: Beibop dopmara odbbekTa
1.3.1.3 -g debug wm --dformat=debug: Beibop dbopmara otimamkm
1.3.1.4 -h wnum --help: BeiBos pe3rome mapamMeTpoB
1.3.1.5 -L list miam --lformat=list: Beibop dopmara jmucrunr-dgaitaa
1.3.1.6 -l listfile min --list=Ilistfile: Oupenesienne Ha3BaHWs JUCTUHT-haiia
1.3.1.7 -m machine nian --machine=machine: Bpibop 1esieBoit MaIHbBI TaHHON apXu-
TEKTYPBL -« « v e v v et e e e e e e e e e e e e
1.3.1.8 -0 filename wim --objfile=filename: Onpeneenre Ha3BaHUsT OOBLEKTHOTO (haiiyia
1.3.1.9 -p parser mwin --parser=parser: BoIOOp CHHTaKCHYECKOI'0 aHAJIM3aTOPa
1.3.1.10 -r preproc mnu --preproc=preproc: BeIiOOp mpemporieccopa
1.3.1.11 --version: Ilosydenue Bepcum Yasm o v v v v v vt
[lapaMeTphl IPEAYIPEKIAEHIIT . « . « o o o o o v v e e et et e et et e e e
1.3.2.1 -w: Bamperienne Bcex MPeLyIpPeXkKIAIONNX COOOMEHMA
1.3.2.2 -Werror: O6paboTKa IpeIynpeRIeHn KaK OMUO0K
1.3.2.3 -Wno-unrecognized-char: He npemynpexars 00 HEOIIO3HAHHBIX BBOIHBIX CHM-
BOJMAX « « v e v e e e e e e e e e e e e e e e
1.3.2.4 -Worphan-labels: IIpegynpexmats o MeTkax 6e3 3aBepIIAIONIETO TBOETOINS .
1.3.2.5 -X style: Usmenenue cruiis coobuienuii 06 ommbKax /IpeIyupeKIeHusIx . . .
ITapaMeTphl MPEMPOIIECCOPA - « « « v v v v e o e e v et e e e e e e e e
1.3.3.1 -D macro[=value|: [Ipenonpenenenne Maxpoca « . . o .o
1.3.3.2 -e uwim --preproc-only: ToJBKO MPENPOIECCUPOBAHTE
1.3.3.3 -1 nymw: [lobaByieHue 1myTu BKIIOYAEMBIX DAMIOB
1.3.3.4 -P filename: [IpegBapuresibHoe BKIOUeHHE Pailga
1.3.3.5 -U macro: OTMeHa OIpPENeIEHAST MAKPOCA . . « = « o « o o o v o e e oo o o

TloniepKuBaEMBIE ADXUATEKTYDPBL .« .« « v o v o v v e e et e e e e e e e e e
TopepKuBaeMble CHHTAKCHIECKTE AHATU3ATOPBI (CHHTAKCUCHL) . « .« o« o v o o o oo o o
TlogepxkuBaeMbie GOPMATBI OOBEKTOB .« « « « « v v v v e v e e e e e e e e e e e e e e e e
[MognepkuBaeMbie POPMATHI OTIATKI .« .« « « « o v e v e e e e e e e e e e e e e e e e e e

IIT NASM Syntax

2 dseik NASM
0630p accembirepuoii crpokd NASM
2.2 TICEBRO-MHCTPYKITHT . . .« « o o e v v e it et e et e e e e e e e e e e e e e e e e

2.1

221

DB u ee JAPYy3bd: O6basiienue NHUIMAJIN3UPOBAHHbIX JJTaHHBIX

iii

W w w =

ot

00 00 00 00 =1 ~I =1 ~J ~J ~J ~J

© © © © o 0o o

O © O ©

OIJTIABJIEHUE

2.2.2 RESB u ee apy3bs: O0bsiBiieHre HEMHUNMAIU3UPOBAHHBIX JAHHBIX 18
2.2.3 INCBIN: Britouenre BHEITHUX OMHAPHBIX QAWIOB o v oo v o oo 19
2.2.4 EQU: OupeiesieHIe KOHCTAHT . . « . .« o o v v e e vt e e e e e e e e e e e e e e 19
2.2.5 TIMES: IloBropeHne HHCTPYKIIH MJIA JAHHBIX . . . « « « o o o o v v e e o e o o o 19

2.3 Effective Addresses e e 20
2.3.1 64-bit Displacements 20
2.3.2 RIP Relative Addressing 21

2.4 Immediate Operands L e 21
2.5 Constants 22
2.5.1 Numeric Constants 22
2.5.2 Character Constants e e 22
2.5.3 String Constants 23
2.5.4 Floating-Point Constants L 23

2.6 EXDPressions e e e e 23
2.6.1 |: Bitwise OR Operator 24
2.6.2 ": Bitwise XOR Operator 24
2.6.3 &: Bitwise AND Operator e 24
2.6.4 << and >>: Bit Shift Operators 24
2.6.5 -+ and -: Addition and Subtraction Operators 24
2.6.6 * /,//, % and %%: Multiplication and Division 24
2.6.7 Unary Operators: +, -, “and SEG 0. 24
2.6.8 SEGand WRT e 24

2.7 STRICT: Inhibiting Optimization et 25
2.8 Critical EXpressions e e e 25
2.9 Local Labels. e e 26
3 The NASM Preprocessor 29
3.1 Single-Line Macros 29
3.1.1 The Normal Way: %define 29
3.1.2 Enhancing %define: %xdefine 30
3.1.3 Concatenating Single Line Macro Tokens: %+ 31
3.1.4 Undefining macros: %undef 31
3.1.5 Preprocessor Variables: %assign 31

3.2 String Handling in Macros L 32
3.2.1 String Length: %strlen 32
3.2.2 Sub-strings: %substr 32

3.3 Multi-Line Macros 0 e e e e e e e 32
3.3.1 Overloading Multi-Line Macros o 33
3.3.2 Macro-Local Labels 34
3.3.3 Greedy Macro Parameters 34
3.3.4 Default Macro Parameters Lo 35
3.3.5 %0: Macro Parameter Counter 35
3.3.6 %rotate: Rotating Macro Parameters 35
3.3.7 Concatenating Macro Parameters L oL 36
3.3.8 Condition Codes as Macro Parameters 37
3.3.9 Disabling Listing Expansion oo o 37

3.4 Conditional Assembly 38
3.4.1 %ifdef: Testing Single-Line Macro Existence 38
3.4.2 %ifmacro: Testing Multi-Line Macro Existence 38
3.4.3 %ifctx: Testing the Context Stack 39
3.4.4 %if: Testing Arbitrary Numeric Expressions 39
3.4.5 %ifidn and %ifidni: Testing Exact Text Identity 39
3.4.6 %ifid, %ifnum, %ifstr: Testing Token Types 39
3.4.7 %error: Reporting User-Defined Errors 40

3.5 Preprocessor Loops e e e 40
3.6 Including Other Files e 41

iv

3.7 The Context Stack 42

3.7.1 %push and %pop: Creating and Removing Contexts 42
3.7.2 Context-Local Labels 42
3.7.3 Context-Local Single-Line Macros 42
3.7.4 %repl: Renaming a Context 43
3.7.5 Example Use of the Context Stack: Block IFs 43
3.8 Standard Macros e 44
3.8.1 _ YASM MAJOR__,etc: Yasm Version 44
382 FILE and LINE :File Name and Line Number. 45

383 _ _YASM OBJFMT and = OUTPUT_ FORMAT : Output Object Format
Keyword e e 45
3.8.4 STRUC and ENDSTRUC: Declaring Structure Data Types 45
3.8.5 ISTRUC, AT and IEND: Declaring Instances of Structures 46
3.8.6 ALIGN and ALIGNB: Data Alignment 46
4 NASM Assembler Directives 49
4.1 Specifying Target Processor Mode 49
4.1.1 BITS . 49
4.1.2 USEL6, USE32, and USEG4 . . . o o o oot oo 50
4.2 DEFAULT: Change the assembler defaults 50
4.3 Changing and Defining Sections L 50
4.3.1 SECTION and SEGMENT e e 50
4.3.2 Standardized Section Names 50
433 The SECT Macro i 50
4.4 ABSOLUTE: Defining Absolute Labels. 51
4.5 EXTERN: Importing Symbols 52
4.6 GLOBAL: Exporting Symbols e 52
4.7 COMMON: Defining Common Data Areas 52
4.8 CPU: Defining CPU Dependencies 53
IV GAS Syntax 55
5 TBD 59
V Object Formats 61
6 bin: Flat-Form Binary Output 65
6.1 ORG: Binary Origin e 65
6.2 bin Extensions to the SECTION Directive 65
6.3 bin Special Symbols 67
6.4 Map Files o e e e 67
7 coff: Common Object File Format 69
8 elf32: Executable and Linkable Format 32-bit Object Files 71
8.1 Debugging Format Support L 71
8.2 ELF Sections e 71
8.3 ELF Directives e e 71
8.3.1 IDENT: Add file identification 72
8.3.2 SIZE: Set symbol size e 72
8.3.3 TYPE: Set symbol type 72
8.3.4 WEAK: Create weak symbol 73
8.4 ELF Extensions to the GLOBAL Directive 73
8.5 ELF Extensions to the COMMON Directive 74

OIJTIABJIEHUE

8.6 elf32 Special Symbols and WRT

9 elf64: Executable and Linkable Format 64-bit Object Files
9.1 elf64 Special Symbols and WRT

10 macho32: Mach 32-bit Object File Format

11 macho64: Mach 64-bit Object File Format

12 rdf: Relocatable Dynamic Object File Format
13 win32: Microsoft Win32 Object Files

14 win64: PE32+ (Microsoft Win64) Object Files
14.1 win64 Extensions to the SECTION Directive
14.2 win64 Structured Exception Handling L L oo
14.2.1 x64 Stack, Register and Function Parameter Conventions
14.2.2 Types of Functions e
14.2.3 Frame Function Structure L o
14.2.4 Stack Frame Details
14.2.5 Yasm Primitives for Unwind Operations
14.2.6 Yasm Macros for Formal Stack Operations

15 xdf: Extended Dynamic Object Format

VI Debugging Formats
16 cv8: CodeView Debugging Format for VC8
17 dwarf2: DWARF2 Debugging Format

18 stabs: Stabs Debugging Format

VII Architectures

19 x86 Architecture
19.1 Instructions L e
19.1.1 NOP Padding o e
19.2 Execution Modes and Extensions e
19.2.1 CPU Options o o i e e e
19.3 Registers. L
19.4 Segmentation e

VIII Index

IIpeamerHsbrit ykazaTesnb

7
7

79
81
83
85

87
87
87
87
89
90
90
91
92

95

97
101

103

107

111
111
111
111
112
115
115

117

119

vi

CHIcoK MLIICTpalnii

14 win64: PE32+ (Microsoft Win64) Object Files
14.1 x64 Calling Convention
14.2 x64 Detailed Stack Frame

19 x86 Architecture
19.1 x86 General Purpose Registers

vii

CI1coK TadJInIL

6 bin: Flat-Form Binary Output
6.1 bin Section Attributes e 66

8 elf32: Executable and Linkable Format 32-bit Object Files
8.1 ELF Section Attributes e 72
8.2 ELF Standard Sections L 72

14 win64: PE32+ (Microsoft Win64) Object Files
14.1 Function Structured Exception Handling Rules 89

19 x86 Architecture

19.1 x86 NOP Padding Modes e 112
19.2 x86 NOP CPU Directive Options et 112
19.3 x86 CPU Feature Flags e 113
19.4 x86 CPU Names 114

X

Yacrp |

Preface

0.1. INTRODUCTION

0.1 Introduction

Yasm is a (mostly) BSD-licensed assembler that is designed from the ground up to allow for multiple assembler
syntaxes to be supported (e.g. NASM, GNU AS, etc.) in addition to multiple output object formats and
multiple instruction sets. Its modular architecture allows additional object formats, debug formats, and
syntaxes to be added relatively easily.

Yasm started life in 2001 as a rewrite of the NASM (Netwide) x86 assembler under the BSD license.
Since then, it has matched and exceeded NASM’s capabilities, incorporating features such as supporting the
64-bit AMD64 architecture, parsing GNU AS syntax, and generating STABS, DWARF2, and CodeView 8
debugging information.

0.2 License

Yasm is primarily licensed under the 2-clause and 3-clause «revised> BSD licenses, with two exceptions.
The NASM preprocessor is imported from the NASM project and is thus LGPL licensed. The Bit::Vector
module used by Yasm to implement Yasm’s large integer and machine-independent floating point support is
triple-licensed under the Artistic license, GPL, and LGPL. The full text of the licenses are provided in the
Yasm source distribution.

This user manual is licensed under the 2-clause BSD license, with the exception of I'aBa 2, I'maBa 3, and
['aBa 4, large portions of which are copyrighted by the NASM Development Team and licensed under the
LGPL.

0.3 Material Covered in this Book

This book is intended to be a user’s manual for Yasm, serving as both an introduction and a general-purpose
reference. While mentions may be made in various sections of Yasm’s implementation (usually to explain the
reasons behind bugs or unusual aspects to various features), this book will not go into depth explaining how
Yasm does its job; for an in-depth discussion of Yasm’s internals, see The Design and Implementation of the
Yasm Assembler.

Yacrp 11

Using Yasm

[1aBa 1

3allycK Yasm

1.1 CunTakcuc KOMaHIHOM CTPOKH! yasm

yasm [-f format| [-o outfile] [dpyeue napamempui...] infile

1.2 Onucaunme

Komanma yasm accembaupyer daiin infile 1 HEIIOCpeICTBEHHO BBIBOIUT pe3y/IbTaT B (baiis outfile ecm ompe-
nenen. Eciu outfile HeompenesiéH, yasm M3BJIEKAET BBIXOAHON (hailyl ¢ HA3BAHMEM IO YMOJIIAHUIO - TAKOE KaK
y BXOomHOro daiiyia, 0OBIYHO C PACIIHPEHUEM .0 UJIN .0bj, mim 6e3 BCIKUX PACIIUPEHUN i1 HeOOpabOTaHHOTO
ounapuoro ¢aitna. B cayuae orcyreTBus BxomgHOTO (haita, yasm.out OyaeT Ha3zBaHHEM BBIXOJHOTO aiiia.

Eciau ucnonpsyercst «-» B Kadercse infile, yasm acceMOJUpPyeT CTAHIAPTHBIN BXOJ U HEIOCPEICTBEHHO
BBIBOJIUT pe3yJsibTaT B daiii outfile, mm yasm.out ecym outfile Heonpeie/éx.

Ecyin Bo BpeMsi BBHITIOJIHEHUST TIPOrPAMMBI OOHAPYKEHBI OIMMUOKY WJIN PEILYIPEXKICHUs, Yasm BBIBOIUT
coobinenue omubku B stderr (06brano Tepmunal). Eciu ommbok wim npeaynpexienun e o6HapyKeHo, Yasm
He BBIBOJUT HUKAKUX COOOIIEHUN.

1.3 IlapameTpsl

BosibmmaCcTBO TApaMATPOB MOTYT OBITH TIEPEIAHBI UCIOJIB3Y sl OJHY U3 ABYX (POPM: JIMOO TUPE C O/IHOI OYKBOI,
JmbO 7Ba THPE ¢ JAJIMHHBIM Ha3BaHWEM mapamerpa. [lapameTpsl mepednc/ieHbl B aja(haBUTHOM TOPSIIKE.

1.3.1 OcHoBHBIE TApAMETPHI
1.3.1.1 -a arch mam --arch=arch: Bei6op nesieBoii apXuTeKTypbl

Boibupaer 1esieByio apxurekTypy. Apxurekrypa «x86» SIBISETCS apXUTEKTYPOil 0 YMOJYAHUIO, KOTOpPast
mojiiepKuBaeT 0ba Habopbl KomaH : [A-32 u mpoumssojuabie, 1 AMDG64. JIjisi BBIBOJA CITHCKA JIOCTYITHBIX
apXUTEKTYP B CTAHJIAPTHBIA BBIBO/I, BOCIOJIB3YiiTech «help» B kKadecTse arch. Cm. maparpad Pasmen 1.4, rie
[PUBEJIEH CIUCOK TI0/[JIEPYKBIBAEMbBIX apXUTEKTYP.

1.3.1.2 -f format mam --oformat=format: Beibop dopmara obbekTa

Bribupaer dopmar BeixomHOro oobekta. Popmar «biny saBiasgercs dopMaToM OO0BEKTA MO YMOIIAHUIO, KO-
TOPBIA Ha caMOM JeJjie TLIOCKWit OmHapHbIit popMmaT 0e3 pacupemesienus. s BHIBOAA CIMCKa JOCTYIIHBIX
dopMaToB 00bEKTa B CTAaHIAPTHBINA BBIBOJ, BOCHO/b3yiiTech «help» B KadecTse format. Cm. naparpad Pas-
et 1.6, rjie IpuBeieH CIIMCOK ITOJIEPXKbIBAEMbBIX (pOPMATOB 0ObEKTA.

7

I'JTABA 1. 3AIIYCK YASM

1.3.1.3 -g debug nmm --dformat=debug: Beidbop dopmara ornagku

Bribupaer dbopmar orianku Jyisi orsiagovunoit madopmarmu. Omragodnas nHMOPMAIUS MOXKET HCIIOJIb30-
BATHCHA OTJITINKOM, YTOOBI CBSI3aTh UCIOJTHIEMBIN KOJT Ha3a] K NCXOAHOMY (Dbailyly WU HOJIyIUTh CTPYKTYPY
JAHHBIX 1 nHGOpMaImio Tuia. JlocTymabe (hOPMATHl OTIIAJIKA U3MEHSIIOTCS MEYKJLY PAa3IuIHBIMU (hOpMaTaMU
00beKTa; yasm OMMOETCsT €CI HelpaBUIbHAs KoMOWHaIMA Oy1eT BbiOpaHa. PopMaT OTIAKHI IO YMOJTIAHIIO
BBIOMpaeTcst popmaToM obbekTa. JIjist BBIBOJIA CIIUCKA JOCTYITHBIX (DOPMATOB OTJIAKU B CTAHIAPTHBIN BBIBO/I,
BocmoJib3yiitech «help» B kadgecrBe debug. Cm. maparpad Pazmen 1.7, rie mpuBeieH CIMCOK HOIIEPXKbIBAE-
MBIX (POPMATOB OTIAIKU.

1.3.1.4 -h nawu --help: BreiBoa pe3iome mapameTpos

BriBomuT pestome BbIZOBHBIX mapamerpoB. OcrajibHBIE ITapaMeTpbl UTHOPUPYIOTCS, & BBIXOJAHOU (dailyi He
TeHepupyeTcA.

1.3.1.5 -L list mu --lformat=list: Beibop dopmara auctunr-daiina

Bribupaer dbopmar/cruib BoxonHoro Jjucruar-daiiia. Jlucrunr-daiiibl, Kak NpaBuio, CMEIIUBAIOT EPBO-
HaYaJbHBIA UCXOIHBIN KOJ[C MAIIMHHBIM KOJIOM Cre€HEepPHUPOBAaHHBIN accembiepom. PopMaToM JIMCTHHTA IO
YMOTYAHUIO ABJISIETCHA «Nasmy», KOTopblii umurupyer dpopmar jmmcruara NASM. [l BBIBOAA CIIMCKA JOCTYII-
HBIX (HOPMATOB JTUCTUHT-DAlIa B CTAHIAPTHBIN BBIBOJ, BOCIOIB3yiiTech «help» B kKauecTse list.

1.3.1.6 -1 listfile mam --list=listfile: OnpeneseHne Ha3BaHUS JIUCTUHT-(daiaa

OrmpeiesisieT Ha3BaHMUE BBIXOIHOTO JiCTHHT-(daitna. Ecau aToT napamMerp He UCIOIB3yeTCsl, TUCTUHT-(Dail He
reHepupyercs.

1.3.1.7 -m machine nam --machine=machine: Bb10op 11eJ1€BOI1 MaIIMHBI JJAHHO apXUTEKTYPbI

Bribupaer 11esieByio MaINHy HaHHONR apXUTeKTYpbI. 1o cylnecTBy moATHII BHIOPAHHON apXUTEKTYPhI, TUI Ma-
IIMHBI BBIOMPAET MEXK Iy IVIABHBIMU IIOJTUIIAMU apXUTeKTypbl. Hanmpumep, /i apxuteKTyphl «x86» JOCTYIIHBI
JIBE MaIlMHBL: «X86», KOTOpasi UCIOJIb3yeTcs HabopoM nHCTpyKImu [A-32 u npon3BoaHbIM 32-6UTOBBIM HAOO-
poMm mHCTpyKImu, u «amd64», KoTopast ucnoJib3yercs 64-6MTOBBIM HAOOPOM MHCTPYKIMH. DTO PA3IUICHUE
TpeOyeTcst [IJIsi TeHEPAIUH TPABUILHOTO 00BbEKTHOTO (haiilia /s pacupee/ieHHbIX (hOPMATOB OObEKTa TAKUX
kak COFF u ELF. /g BeIBOma cimcKa JIOCTYIHBIX MAIUH JTAHHOW apXUTEKTYPBhl B CTAHJIAPTHBIA BBIBOJ,
Bocrioyib3yitrech «help» B KadecTBe machine U yKarKuTe JAHHYIO apXUTEKTYPY € MOMOIMIO -a arch. CM. 9acTb
Yacte VII g 6os1ee noapobuoit %oundopmanum.

1.3.1.8 -o filename mau --objfile=filename: OnpenesieHne Ha3BaHUs 06bEKTHOrO (haiiia

Ornpeiesisier Ha3BaHUE BBIXOJHOTO ailia, oTBepras JiioOble HaA3BaHUS [0 YMOJIYAHUIO TeHepUpyeMble Yasm.

1.3.1.9 -p parser mJim --parser=parser: BbIOOp CHHTAKCUYECKOTO aHAJIU3AaTOPA

Bribupaer cunrakcuaeckuii anaauzarop (cuarakcuc accembiiepa). CHHTAKCHIECKUM aHAJIN3aTOPOM II0 YMOJI-
YAHUIO SIBJISIETCH «Nnasmy, KoTopblil amysupyer cuarakcuc NASM (Netwide Assembler). Ipyrum gocrynHbiM
CUHTAKCUIECKUM aHAJU3ATOPOM SIBJISETCSI «gasy, KOTopbIil amysmupyer cuatakcuc GNU AS. Jlis BeiBoja CIivc-
Ka JIOCTYIHBIX CHHTAKCUYECKUX aHAJM3aTOPOB B CTAHJIAPTHBHIN BBIBOJ, BOCHOJBb3yiiTech «help» B KadecTBe
parser. Cm. maparpad Pazaen 1.5, rie npuBeieH CIMCOK MOAAEPKBIBAEMBIX CHHTAKCUIECKUX AHAIIM3aTOPOB.

1.3.1.10 -r preproc mam --preproc=preproc: BbIOOp mpemnpoineccopa

Bribupaer npemporteccop st 00paboTKM BXOIHOTO (ailia mpexK e, 9eM MepeliaTh ero K CHHTAKCUIECKOMY
ananuzaropy. IIpemnporeccopsr 9acTo obecrednBaioT MYHKIMOHAIBHBIE BOSMOXKHOCTH MAaKpPOCOB, KOTOPBIE HE
BKJIIOYEHBI B OCHOBHOW CHHTAKCHIECKHUil aHaam3aTop. IIpemporeccopoM Mo yMOTIAHUIO SABJISETCS <«nasmsy,
KOTOPBI Ha caMOM Jlejie IMIIOPTUPOBaHHas Bepcus gaxTudeckoro mpemnporeccopa NASM. TocTynen Takxe
[IPEIPOIIECCOP «Taw», KOTOPBIN IIPOCTO IMPOIIyCKaeT IIAar MPelpOoIecCOPHOl 00paboTKH, IeperaBas BXOIHOM

8

1.3. IIAPAMETPHI

dailsn HermoCpeICTBEHHO K CHHTAKCUIECKOMY aHAJIM3aTopy. JLis BBIBOIa CIIMCKA JOCTYIIHBIX IIPEIPOIECCOPOB
B CTAHJAPTHBII BBIBO/I, BOCIIOIb3yiiTech «help» B KadyecTse preproc.

1.3.1.11 --version: ITosryyenue Bepcun Yasm

DTOT mapaMerp 3aCTABJIAET YASM BBIBECTH €r0 HOMED BEPCUU TAKKe KaK U PE3IOMe JIMIIEH3UN B CTAHIAPTHBII
BBIBO/I. Bee Apyrue mapamMeTpbl HTHOPUPYIOTCS U BBIXO/IHOM (bailyl He reHepUPYeTCs.

1.3.2 IlapameTpsl npeaynpeKIeHus

[Tapamerpsr -W umeror 1Be mpotuBomoiokubie hopmbr: -Wname? u -Wno?-name?. 31ech npuBeIeHbl TOJIb-
KO HeCTaHIapTHbIE (DOPMBI.

[TapameTpsl npeaynpexenns: 06padaTHIBAIOTCS B HOPsIKE, TAHHOM B KOMAHIHON CTPOKE, TOITOMY €CJIN
-w compoBoxgaercs - Worphan-labels, Bce mpeynipeskieHust BHIKIIOUEHBI 38 UCKAI0O%EHUEM CTPOK NCXOTHUKA,
B KOTOPBIX HaXOJATCA METKN 683 3aBepIIaroniero JABoeTOInd.

1.3.2.1 -w: 3amperliieHue BceX MIPeayIPeXKJAI0IINX COOOIeHU

DTOT mapaMerp 3acTaB/seT Yasm 3allpeliarh Bce Iperylpexaatonme coobuenus. Kak o0Cy»KieHO BbIIIIE,
TOT HAPAMETP MOXKET COIPOBOXKIATHCS JIPYTUMU ITapaMeTpaMu, YTOObI BHOBb OTOJIOKMPOBATD OIIPE 1€/ IEHHBIE
MIPETy IPEXK JTCHMSI.

1.3.2.2 -Werror: O6paboTka nmpeayInpexaeHnil Kak onmboK

DTOT mapamMeTp 3acTaB/sieT Yasm o0padaThiBaTh BCe MPELYIPeXKIeHnst KaK ormuOKku. OOBITHO peIyIpeK ie-
HUS HE MPEMSATCTBYIOT TOMY, YTOOBI 00 bEKTHBI (hailyr ObLI CreHepUPOBAH, U HE IIPUBOIAT K COCTOSHUIO OTKA3a
BBIXOJIa U3 yasm, TOTJa KaK OIMUOKH ITO JIEJAI0T. DTOT IapaMeTp JejIaeT MPeIypeK IeHNs SKBUBAJICHTHBIME
oImubKaM ¢ TOYKH 3PEHUSI STOTO MOBEICHUSI.

1.3.2.3 -Wno-unrecognized-char: He npeaynpe>x1aTh 06 HEOTIO3HAHHBIX BBO/JHBIX CHMBOJIAX

3acrasiisier Yasm He IIpejylpexkIaTbh 00 HEOIIO3HaHHBIX CUMBOJIAX, HaiijeHHbIX BO BBOje. OObIYHO Yasm
reHepupyer NpeylpexKienne s jioboro cumposia He-ASCII, HaiineHHOro Bo BXOIHOM daiie.

1.3.2.4 -Worphan-labels: IIpegynpe>kgath 0 MeTKax 6e3 3aBepIIIAIONIETO JBOETOYNSA

Kormga ucrosibzyercss NASM-coBMeCTUMBIN CHHTAKCUYECKUI aHAIU3ATOP, ITOT HapaMeTp 3acTaBiisierT Yasm
MPeIyIpeXIaTh O MeTKax 0e3 3aBepIIarolnero JBOETOYNs, eCJId OHU eJMHCTBEHHBIE B CTPOKe. B TO Bpems
KaK OHU SBJIAIOTCS MPABUJILHBIMUA MeTKaMu B cuaTakcuce NASM, oHu MOTYT OBITH HEYMBIILJICHHBIMU, U3-38
OIIeYaTOK WJIN YIIOPSIOYEHUS OIMpeeIeHIit MaKpPOCOB.

1.3.2.5 -X style: Uamenenune ctuisi coobiieHuii 06 ommbKax / mpeynpeXk JeHusiX

Bribupaer ompeseseHHbIl CTHIb BBIBOJA it COOOIEHUI 00 OMMOKAX U IMPEIyIPEekKTAINNX COOOIIEHNUA.
CrujieM MO0 yMOJTYAHUIO SIBJISIETCS «gNU», KOTOPBI MUMUTHPYET BBIBOJ gcc. JloCTyrmeH TakKe CTHIIb «VC»,
KOTOPBIIf UMUTHPYET BbIBOJ KoMimisaTopa Microsoft Visual Studio.

DTOT mapamerp JIOCTyIeH, 9ToObl Yasm 0osiee ¢cBoOoHO mHTErprupoBas B cpeibl IDE, Takne kak Visual
Studio mim Emacs, nossosgs IDE npaBuibHO pacrnosHarh coobIenne o6 ommoKe / Ipe Ly IpeK IaioIee cooo-
[EHNEe KaK TaKOBOE U CBS3AThCS C HAPYIIUTETHHON CTPOKON MCXOJHOIO TEKCTA.

1.3.3 IlapameTtpsl mmpenpoiieccopa

Teoperndeckn 9T IPENPOIECCOPHBIE ITAPAMETPhI OyAyT MEHCTBUTEIBHBI JIJIsd JIIOOOTO IIPENpoIieccopa, HO B
HACTOSIIIee BpeMsl €JIMHCTBEHHBIM ITPEIIPOIIECCOPOM B Yasm sIBJISIETCs MIPEIIPOIECCOP «Nasm».

9

I'JTABA 1. 3AIIYCK YASM

1.3.3.1 -D macro[=value]: IIpenonpenenenne makpoca

IIpeonpeiesisier OHOCTPOUHBIH Makpoc. 3HAUEHNE MAKPOCa YKA3bIBATh HEODA3aTEIbHO (€CiM 3HAUEHHEe He
YKa3aHO, MAaKpOC OyJIeT Olpee/ieH, HO Ha IyCTOe 3HAYCHUE).

1.3.3.2 -e mam --preproc-only: TosbKo mpemnporieccupoBaHue

OcCTaHABINBAET IPOIECC ACCEMOTIMPOBAHIS TIOCJIE IIPETIPOIECCOPHOTO YPOBHST; BHIBOI, IIPEIIPOIIECCOPA OTIIPAB-
JISI€TCs B OIPEJIeIeHHbII HA3BAHUEM BBIBOJL UJIM B CTAHJAPTHLII BBIBOJL, (€cju BbIBOZ, He onpejeseH). OObekT-
HBI (hailyl He TPON3BOINTCS.

1.3.3.3 -1 nyme: JobaBiieHne IIyTu BKJIIOYaeMbIX (pailjioB

IobaBiisteT nyms KaTaJjora K Iy TH OUCKa (hailyioB Jj1s BKIIOUeHus. 110 yMOJ9aHuIo Iy Th 115 ToncKa (haitioB
BKJIIOYA€T TOJBKO KATaJor, B KOTOPOM HAXOIUTCS MCXOHBIN (aii.

1.3.3.4 -P filename: IIpegBapuresnbHOe BKIOUeHue daiiia

[Ipensapurenbuo BrIOYaeT daiin filename, Tak, Kak ecau Obl filename ObLT BKJIIOYEH BO BBOe. MoxkeT OBITDH
[IOJIE3HBIM JIJIsI TIPEJIBAPUTEIHLHOIO JT00ABJIEHISI MHOIOCTPOYHBIX MAKPOCOB, KOTOPBIX -D He MoiepKuBaer.

1.3.3.5 -U macro: OTmMeHa ornpeaesieHusi MaKpoca

OTMeHseT OlpeJeJEHHBIA OJHOCTPOUHBIA MAKPOC (MO0 BCTPOEHHBIN MAKPOC JIMO0 MaKPOC PAaHee OlpPee/eH
B KOMaHJHOI CTpOKe ¢ nomoIio Kimoda -D (cMm. naparpad Pasmen 1.3.3.1)).

1.4 Ilommep:KuBaeMble apXUTEKTYPbI

Yasm nojepzkuBaer cieiyionme apxurekTypubie Habopsl uncrpykuuit (AHU). Cm. Yacrs 5 miusa Gosiee
MO IPpOOHOM NHMOPMAITAN.

le3b ApxwmrekTypa «le3b» mogmepxusaer AHU LC-3b, xotopsriit npumensiercst B kypee ECE411 (dbopmais-
Ho ECE312) na Yuusepcurere Illinois, Urbane-Champaign, Kak 1 Ha OCTAJIbHBIX YHUBEPCUTETCKUX KyD-
cax. Jljist 6ojtee mopobHO nHGOPMAIMY U IPUMEPOB UCXOIHOTO0 Kofa cMoTpute http://courses.ece.uiuc.edu/-
ecedll/. Apxurektypa «lc3bs cocrout ToMBKO M3 OMHON MarmmHBL: «lc3bs.

x86 Apxurekrypa «x86» momaepxusaer Habop uHcrpykiuii IA-32 u npousBozuble (BKJto4Yas 16-6uroBble
n HellnTesnoBekne nHCTPYKIMK) n Habop mHCTpyKImit AMDG64. OHa cocTouT M3 ABYX MAaIIumH: «X86»
(st TA-32 u npoussogabix) u «amd64» (miss AMD64 n npoussoabIx). MalmuHO 1Jis apXUTEKTYPh
«x86» IO YMOJTIAHUIO SIBJIFETCS MAIINHA «X86».

1.5 HO,Z[,ZLep)KHBaeMLIe CUHTaKCHNYIeCKMnue aHaJINn3aTOPhbI (CHHT&KCHCI)I)

Yasm anaju3upyer cjeyolie CHHTAKCUCHI acceMbiiepa:

nasm Cunrakcuc NASM siBisiercss HanboJiee mMOTHOMYHKIIMOHAJIBHBIM CUHTAKCUCOM ITOJJIEPYKUBAEMBIM B
Yasm. Yasm moutu 8 100% cosmectum ¢ NASM mira 16-6urosoro u 32-6urosoro x86 xoma. Jlomommm-
TeJIbHO Yasm mojepkuBaer 64-6urosniit AMD64 ko ¢ Yasm pacmmpenusivu K cuatakcucy NASM.
Cwm. Yacrs Hacts 111 mrst 6ostee mopobroit nrdopManun.

gas GNU Accembuep (GAS) siBisiercst pakTHIECKUM MeKIIAT(GOPMEHHBIM acceMOJIEPOM JJIsl COBPEMEH-
wvbix Unix cucrem, u ucnosibdyercs Kak backend gy GCC kommumisitopa. [lognepxka cuarakcuca GAS
B Yasm yMepeHHO XOpOIlla, XOTsl He BIIOJHE Pa3BUTA: MOJJIECPIKUBAIOTCS HE BCE JUPEKTUBBI U TOJHKO
32-6uroBas x86 1 AMDG64 apxurekrypni. Takxke He nommepxkubaercst mpernporeccop GAS. Hecmorpst
HA 9TH OrpaHUYeHus, moiepKKa cuarakcuca GAS B Yasm joctarodso xoporra, 9Tobbl 06paboTaTh Mo
cymectBy Bech BbiBoa x86 1 AMD64 GCC rommuistopa. Cym. Hacte Yacts [V st 60s1ee monpobHOit
nHMOpPMAITUH.

10

http://courses.ece.uiuc.edu/ece411/
http://courses.ece.uiuc.edu/ece411/

1.6. IIOOAOEP?KMBAEMBIE ®OPMATEI OB bEKTOB

1.6 HO,Z[,Z[ep}KI/IBaeMbIe (bOpMaTI)I 00 BLEKTOB
Yasm nojaepkuBaer cjemyomnue popMaThl 00beKTOB. BoibIie moapobHocTeit MoxkHO HaliTu B Hactu Yacts V.

bin ®opmat «bin» 00beKTa IPOU3BOAUT ILJIOCKO-(POPMATHOM, HellepeMeIaeMoii onHapHbIit daitin. OH saBJIsA-
ercst mogxoadamuM jyist cospanus DOS’oseckux ucnosasembix .COM mporpaMm uam Takux Bemleil Kak
6/10kU HavaJIbHON 3arpy3ku. [lomiep:kuBatoTCs TOJBKO TPU CEKIUU W OHU 3alMCHIBAIOTCS B IIPEIOIpe-
JEJIEHHOM TIOPSIIKE B BBIXOIHOM (haiiI.

coff ®opmar COFF obbekra 910 craphlil nepeMeniaeMblii 00beKTHBI (OpMaT HIPUMEHSIEMBIN Ha CTAPBIX
UNIX u coBMeCTUMBIX CHCTEMAX, & Takxke (11o3xke) Ha paspaborounoii cucreme DJGPP st DOS.

dbg ®opmart «dbg» 00beKTa He ABIIETCS «PeAJTbHBIM» (DOPMATOM 00BEKTA; BHIXOIHON (Daila, KOTOPHIit OH
CO3/IAeT TIPOCTO, OIHICHIBAET MOCEI0BATEILHOCTD CACTAHHBIX K HEMY BBI30BOB C HMOMOIIIO Yas, OKOH-
JaTeabHBbIH 00BeKT U TabJIUILY WIEHTH(MUKATOPOB B yA060YNTaAEMOM TeKCTOBOM (hopmare (KOTODBIH B
HOPMAJILHOM opMaTe 00beKTa 00pabaThBAETCs B CIIeIudUIecKoe JBOMHOE MPeICTaBIeHne TOTO 00b-
ekTHOro (hopmara). DToT GhopmMaT 0ObEKTA He IPEIHASHAYEH JJIsl PEAJHLHOIO MCIIOJIBb30BAHNS, 8 CKOpee
JIJIsT TOTO, 9TOOBI OTJIAUTH BHYTPEHHIOI OPraHW3aInio Yasm.

elf ®opmar ELF o6bekra cymecrByer B aByx tunax: «elf32» (mia 32-6urosbix neseit) u «elf64» (ma 64-
6urosbix neseit). ELF - cranmaprabiit hopMar o6bekTa B 00IIEM UCIIOIb3yeMbIil Ha coBpeMeHHbIX Unix
u coBMecTUMBIX cucremax (Hanpumep Linux, FreeBSD). ELF umeer CIoKHYIO HOIIEPXKKY [IEPEMECTH-
MBIX U OOITETOCTYITHBIX 00BHEKTOB.

macho ®opmar Mach-O o6bekra cyriecrByer B 1Byx Tunax: «macho32» (mis 32-6uToBbix neseil) u «xmacho64»
(st 64-6urosbix neseit). Mach-O ucnosbsyercs kak dpopmar oobekra Ha MacOS X. ITockosbky Yasm B
HaCTOsIIllee BpeMs MO/JIep:KUBAET TOJIbKO Habophl KoMaH 1 X86 1 AMDG64, oH MOXKEeT TOJIbKO IIPOU3BECTH
Mach-O 00beKThI Jj1sd ocHOBaHHLIX Ha Muresie Mac’os.

rdf ®opmar RDOFF2 o6bekTa 9T0 IPOCTO MYJIBTHCEKITHOHHBINA (DOPMAT, IEPBOHAYAIBLHO pa3paboTaHHbBII
st NASM. On nojziepkuBaer cerMeHTHbIe cCblikU, HO He ceblikn WRT. Tlpex e Bcero 6b11 paspa-
6oTaH JJIsi TPOCTOTHI U UMEET MUHUMAJUCTUIECKUE 3aTr0JIOBKU JJIS IPOCTOTHI 3arPY3KU U KOMIIOHOB-
ku. [Touplii HA6Op UHCTPYMEHTOB (KOMIIOHOBINUK, OUOIMOTEKAPD, U 3arPY34YUK) PACIPOCTPAHSAETCS €

NASM.

win32 ®@opmar Win32 obbekTa Ipou3BOIUT 00bEKTHBIE (hailiibl coBMecTHMbIe ¢ KoMmuiasTopamu Microsoft
(rakux, kak Visual C\++), npesnasnadennsle Ha 32-6urosyio x86 miardopmy Windows. Cam dopmar
obbekTa 910 pacmupentas Bepcuss COFF.

win64 @opmar Win64 o6bekTa IpOU3BOAUT OO'bEKTHBIE (DaiiJIbl COBMECTUMBIE C KOMIusiTopaMu Microsoft,
npeiHa3HaYeHHble Ha 64-0uToBYyI0 «X64» mardopmy Windows. Dtor dpopMar oueHb MOX0XK Ha, (popMaT
Win32 obbekTa, HO mpou3BOAUT 64-O6MTOBBIE OOBEKTHI.

xdf ®opmar XDF obbekra - 110 cymectBy yipoinentas Bepcusi COFF. 910 Tak:ke MyIbTUCEKIINOHHBIN pac-
npejiesIeHHbINH (hopMaT, KOTOPBIH nojIepKuBaeT 64-6uToBble (PU3UIECKUEe U BUPTYAJIbHBIE aJIPECaIlin.

1.7 IlommepkmBaeMble (popMaThbl OTJIAJIKA

Yasm nojiepkuBaeT renepupoBaHue nHMOPMAIIH 00 OTJIA/IKe UCXOIHOIO YPOBHS B CJIEAYIOMUX hopMaTax.
Bonbmte mogpobrocTeit moxkuo Haiitn B Hactn Yacts VI.

cv8 ®opmar CV8 omnauku npumenserca B Microsoft Visual Studio 2005 (Bepcus 8.0) u moJHOCTHIO HEmO-
KYMEHTHPOBAH, XOTS OH UMEET CHJIbHOE cx0cTBO ¢ panunMu dhopmaramu CodeView. [lognepxka dop-
marta CV8 oTiaJiIku B HACTOsIIEEe BpeMsi OMPAHUYMBAETCS TeHeparueil mHMOPMAIUd HOMEpa CTPOKU
acceMbJIEPHOTO ypOBHs (UTOOBI MO3BOJUTH HA HEKOTOPBIH yPOBEHb OTJIAIKA MCXOJHOTO ypoBHs). VH-
dopmanust 06 oTaagke coxpanserca B ceknusax .debug$S u .debug$T ob6nbexrrOro daitna Win64.

11

I'JTABA 1. 3AIIYCK YASM

dwarf2 ®opmar DWARF2 oriaiku - ¢JI03KHBIH, XOPOIIO JIOKYMEHTUPOBAHHBIN CTAHIAPT JJIsi HHMOOPMAIIUT
06 ormazke. Ou ObLT co3man, 9T0OBI mpeojosieTh Hemocratku B STABS, yunrteiBast mamuoro 6osee
JleTaJibHble 1 KOMIIAKTHBIE OIHUCAHUS CTPYKTYD JaHHBIX, [BIKEHUS [T€PEMEHHON JTAHHBIX, U CJIOKHBIX
SI3BIKOBBIX CTPYKTYp Takux kak B C+. MHdbopmanus 06 oriajke COXpaHsIeTCsl B CEKIMsIX (TOYHO T-
aK 7Ke, KaK HOPMaJIbHbIE IIPOIPAMMHEbBIE CeKIUn) B 00bekTHOM aiijie. Yasm MoIepKUBACT MIOJIHYIO
nepegauay undopmanuu 06 oraagke DWARF2 (manpumep, or C\+ KOMOWISTOPA), U MOXKET TAKWKe
TeHEePUPOBATH NHMOPMAIIUIO HOMEPA CTPOKHU acCeMOJIEPHOrO yPOBHS.

null ®opwmar «nulls oTyagkm - ykasaresap MecTa 3allOJHEHHs; OH He 100aBiseT nHdOpMAaIuun 00 OTIaIKe
K BBIXOJHOMY aitiry.

stabs @opmar STABS omrasiku - mioxo JJOKyMeHTHPOBAHHBIN, TOJYCTaHIAPTHBIN (opMaT st nHpOpMa-
nuu 06 orsajke B 00bekTHBIX (aityiax COFF u ELF. NudopMmariust 06 oT/iagke COXpaHsieTcst KakK 4acTh
TabJIAIIBL WJIEHTH(PUKATOPOB OOBEKTHOTO (ailjia 1 M0ITOMY OrpaHUYEHa B CJIOXKHOCTU U 0OJIACTH BUIU-
moctu. Hecmorpst Ha 310, STABS - 061muit popmar ornaaku Ha crapbix Unix U COBMECTUMBIX CHCTEMAX,
Tak ke kak Ha DJGPP.

12

Yacrp 11

NASM Syntax

13

The chapters in this part of the book document the NASM-compatible syntax accepted by the Yasm
«nasmy» parser and preprocessor.

15

[1aBa 2

A3k NASM

2.1 0O630p accembiiepHoii crpoku NASM

Kaxk 60sbInHCTBO acceMOepoB, KaxKaast ucxoaHast crpoka NASM cofep:kut (ecam 3To He MAKpOC, IIPEpo-
[ECCOpHAs WU acceMOJIepHasl JUPEKTUBa: ¢M. LUiaBa 4), HEKOTOPYI0 KOMOMHAIIUIO Y€ThIPEX MOJieit

MeTKa: HHCTPYKIUS OIepaH/Ibl ; KOMMEHTapHuii

Kak 06br9HO, GOJIBIIMHCTBO 9TUX IOJIEH HEOOsI3aTeIbHBI; JOIMYCKAETCsI IIPUCYTCTBAE WU OTCYTCTBUE JIFO-
60l KOMOMHAIIMN METKH, WHCTPYKIUU U KoMMeHTapuil. KoHeuHO, HeOOXOAUMOCTh TOJIs OMEPAHJIOB OIpeJie-
JII€TCsl IPUCYTCTBUEM U MIPUPOAOI TIOJIsT HHCTPYKITHH.

B NASM wucnosb3yercst HakJIOHHAs depra BjeBO (\) KAK CHMBOJI IPOJIOJKEHUsI CTPOKH; €CJId CTPOKA
3aKaHIMBAETCS HAKJIOHHOW YepTOi BJIEBO, TO CJEIYIOIIas Oy/IeT PacCMAaTPUBATCA KaK YaCTh CTPOKM 3aKOH-
YEeHHOII HAKJIOHHOHM 9epTOil BJIEBO.

NASM He HakJIaBIBAET OI'PAHUYEHUI HA KOJUYIECTBO IPOOEJIOB B CTPOKE: METKU MOT'YT UMETh IIPOOeJIbI
BHAYAJIE, & MHCTPYKIMU MOI'YT HE MMETh HUKAKUAX MPobesioB u T.1. /[BoeToune mmocjie MeTKH TaKxKe HeoOsi3a-
TeJbHO (DTO 03HAYAET, UTO €CJIU BBl XOTUTE IIOMECTUTD B CTPOKY uHcTpyKiuio lodsb, a Beenere lodab, ctpoka
OCTaHeTCsl KOPPEKTHOMN, HO BMECTO MHCTPYKIMH OyIeT 00bsBIeHa MeTKA. BBISBATH JIAHHBIE OMEYaTKH OTYa-
CTH MOXKHO, BBeJsI B cTpoke 3amycka NASM kiiou -w+orphan-labels — B sToMm citydyae npu obHapyKeHUN
MeTKH 0€3 3aKJII0UATEIHHOrO JBOETOUNS OY/IeT BBIIABATHCSI IPEYIIPEXKICHIE).

JlomycTuMbIME CAMBOJIAMU B METKaX SABJSIOTCH OyKBbL, nudpsl, 3Haku _, $, #, @, 7, . u ?. lonycrumble
CHMBOJIBI B Hadajle MeTKH (IIePBbLil CUMBOJI METKH) — TOJIKO OYKBBI, TOUKA (.) (CO clienuasbHbIM 3HAYEHUEM:
eMm. Pasnen 2.9), 3Hak moguepkusanus () u BonpocuresbHbil 3HaK (7). B maenTudukarope Moxer Takke
IpUCYTCTBOBAThL Npedukce $ mIsa ykazaHus TOro, 9To 3TO JEHCTBUTE]BLHO UACHTH(DUKATOP, a HE 3ape3epBu-
POBaHHOE CJIOBO; TAKAM 00PA30M, €CJIM HEKOTOPBIII KOMIIOHYEMbIil BAMHU MOJY/Ib OIMCHIBAET CUMBOJI €aX, BB
mozxkere B Koge NASM (s ykazanus TOro, 9ro T0 He PErUCTp) COCJIATHCS HA HEro Tak: $eax.

IToste MHCTPYKIIMIF MOYKET COJIEPXKATH JIFOOBIE TIPOIECCOPHBIE NHCTPYKITUU: [TO/JIEPKUBAIOTCS HHCTPYKIIAN
Pentium u P6, FPU, MMX, a Ttak:kKe HEKOTOpbIe HEJOKYMEHTUPOBAHHBIE MHCTPYKIWH. [lepes nuCcTpyKIusMu
moryT npucyrcrsoBarh npedukcest LOCK, REP, REPE/REPZ wiu REPNE/REPNZ, ucnonb3yemble 110 ux
obbraHOMY TIpeaHasHadennio. [lojaepkuBatorcs npeduKcbl pasmepa ajpeca u orepamga Al6, A32, O16 u
032. B kauecTBe mpeduKca WHCTPYKIMUA BBl MOYKETE HCIOJIb30BATh TaKXKe 0O03HAUEHHE CeTMEHTHOTO PEru-
crpa: KoJ es mov [bx|,ax sKBUBaJeHTeH Kouy mov [es:bx],ax. Mbl peKOMeH/yeM HCIIOJIB30BATE MOC/IE HNU
CHUHTAKCHUC, T.K. OH COIJIACYETCsl C APYTUMU CHHTAKCUIECKUMU OCOOEHHOCTSIMU SI3bIKA, OJTHAKO JJIsi MHCTPYK-
1uii, He umeromux onepan o (nanpumep, LODSB) u Tpefyomux B HEKOTOPBIX CJIydasiX 3aMEHbI CEIMEHTA,
Ha JAHHBIA MOMEHT HE CYyIIEeCTBYeT HUKAKOTO CHHTAKCHIECKOTO CIoCc0oba 000ONTH KOHCTPYKIHIO es lodsb.

WHcerpykiuu He TpedyeTcst UCIoab30BaTh npedukcsn: npedukcsl, Takue kak CS, A32, LOCK wimu REPE
MOT'YT IPUCYTCTBOBATH B CTPOKE CAMOCTOATEbHO 1 ipu 3ToM NASM 6yjieT reHepupoBaTh COOTBETCTBYIOIIHE
npeduKc-6aiThI.

B pmonosienne ¥ nHCTpyKInsiM mporieccopa, NASM 1o iiepKuBaer TakKe HECKOJIBKO IICEBI0-UHCTPYKITUH,
onucaHHbIX B Paznen 2.2.

Omnepan/(bl HHCTPYKIUIT MOI'YT IIPUHUMATEH HECKOJIBKO (DOPM: OHM MOT'YT OBITH perucrpamu (Haupumep, A-
X, BP, EBX, CR0O: NASM He ucriojib3yer CHHTaKCUC B CTUJIE gas, T'Jie UMEHA PErUCTPOB JOJIKHBI IIPEIBAPITh-

17

I'JIABA 2. A3BIK NASM

cs 3aakoM %), addexrusabivu anpecamu (em. Pazmen 2.3), koucranramu (Paznesn 2.5) win BblpakeHUsIMU
(Pazmen 2.6).

I nacrpyknumit conporieccopa NASM nomyckaer pazsimdabie GOPMBI CHHTAKCHCA: BBl MOXKETE HCITOJIH30-
BaTh JIBYX-OllEPaH IHYI0 (popmy, noepxkuBaemyo MASMowm, a takzke yncto NASMOBCKY0O 0JHO-OIIEPAHIHY IO
¢dopmy Hanpumep, BBl MOXKETE HAIIMCATD:

fadd stl ; 9To 3HaunT st0 := st0 + stl
fadd st0, stl ; 9TO TO Ke caMoe
fadd stl, stO ; 970 3HaumT stl := stl + stO
fadd to stl ; 9TO TO Ke caMoe

[TouTu mobasi MHCTPYKIHUS COIIPOIIECCOPA, CCHLIAIOIIASICS HA COJEPXKUMOE HMaMITH, JOJKHA HCIIOIH30-
Barh oguH u3 npepurkcos DWORD, QWORD, TWORD, DDQWORD, unu OWORD s ykazauus #a ToO,

olepaH]] KaKoro pasmepa JOoJKeH y4acTBOBaTbh B KOMaH/Ie.

2.2 IlceBmo-uHCTpPyKIUuU

[TceBo-MHCTPYKIMK He SABJISIFOTCS PeajbHBIMA MHCTPYKIUAME X86 Ipolieccopa, HO BCe PaBHO IIOMEIIAI0TCs
B II0JIe MHCTPYKIWii, T.K. 9TO HaubOJIee MOIXOAIINEe MECTO JJIst HUX. TeKyIUMU [ICEBI0-UHCTPYKIIUSIMU siB-
asoress DB, DW, DD, DQ, DT, DDQ u DO, ux xonun st paboThbl ¢ HEMHUIIAAIU3UPOBAHHON MaMATHIO
RESB, RESW, RESD, RESQ, REST, RESDDQ n RESO, xomamasr INCBIN, EQU u npedukc TIMES.

2.2.1 DB u ee npy3bsa: O0bsB/IeHNEe MHUITAAITN3UPOBAHHBIX JAHHBIX

DB, DW, DD, DQ, DT, DDQ u DO wucnonb3yorcs jjisi 00bsiBJIEHUs] HHUIUAJIM3UPOBAHHBIX JAHHBIX B BbI-
xogHOM (aitsie. OHE MOT'YT HCIIOJIB30BATHCSI [IOCTATOYHO MHOTHME CIIOCOOAMMU:

db 0x55 ; mpocto Gant 0x55

db 0x55,0x56 ,0x57 ; TOCJIEIOBATEILbHO 3 OaiiTa

db ’a’,0x55 ; CHMBOJIbHAsI KOHCTAHTA

db >hello >,13,10,’%$” ; 9TO CTPOKOBasi KOHCTAHTA

dw 0x1234 ; 0x34 0x12

dw a’ ; 0x41 0x00 (3TO HWpOCTO UMCIIO)

dw "ab’ ; 0x41 0x42 (cuMBOIbHAsT KOHCTAHTA)
dw “abc’ ; 0x41 0x42 0x43 0x00 (crpoka)
dd 0x12345678 ; 0x78 0x56 0x34 0x12

dq 0x1122334455667788 ;0x88 0x77 0x66 0x55 0x44 0x33 0x22 0x11
ddq 0x112233445566778899aabbccddeeff00

; 0x00 Oxff Oxee Oxdd Oxcc Oxbb Oxaa 0x99
; 0x88 0x77 0x66 0x55 0x44 0x33 0x22 0x11

do 0x112233445566778899aabbccddeeff00 ;To ke camoe Kak WpPeIbIIYIIHii
dd 1.234567e20 ; KOHCTaHTa C ILIABAIOIIEl TOYKOM

dq 1.234567€20 ; JIBOWHON TOYHOCTH

dt 1.234567e20 ; PACIIUPEHHON TOYHOCTHU

DT ne momyckaer B KauecTBe OIEPAHIOB YNCIOBbIe KOHCTAHTHI, & DDQ - KOHCTAHT ¢ m1aBaroIeil 3asToi.
JIio60i1 pazmep Gosbire vem DD He j01yckaeT CTPOK B KAYECTBE OIEPAHIIOB.

2.2.2 RESB u ee npy3ps: O0bsiBJIeHNE HEMHUITNAJIN3UPOBAHHBIX JAHHBIX

RESB, RESW, RESD, RESQ, REST, RESDQ u RESO paszpa6orans! Jjis HCIIOJb30BaHusA B BSS-cekmyum Mo-
JIyJIsi: OHU OO'BSBIISIIOT HEUHUUUAAUSUPOSAHHOE TIPOCTPAHCTBO s XpaHEeHUsl JaHHBIX. KaxK/ias npuHIMaeT
OJIVH OTIEPAH/I, SIBJISIIOIIUICS YUCIOM PE3EPBUPYEMBIX HANT, CJIOB, IBOHHBIX ¢I0B 1 T.;1. NASM He moaep:ku-
BaeT CUHTAKCUC PE3ePBUPOBAHKS HEMHUIMAIU3UPOBAHHOIO IPOCTPAHCTBA, peain3osanubii B MASM /TASM,
rjae MOXKHO siesiarb DW 7 minm mojioOHbIE Belu: 9TO 3aMEHEHO MOJHOCTHI0. Omuepam mceBIo-MHCTPYKITHiT
kinacca RESB saBiisiercsi KputudeckuM BbIpakeHmeM: cM. Paszmen 2.8.

Hampumep:

18

2.2. IICEBJO-UHCTPYKIINN

buffer: resb 64 ; pesepBupoBanme 64 OGaiT
wordvar : resw 1 ; PE3epPBUPOBAHUE CJIOBA
realarray resq 10 ; MaccuB m3 10 4Ywmcen ¢ IUIAaBaroIEd TOYKOM

2.2.3 INCBIN: BkiroyeHne BHeIlIHUX OMHapPHBIX (pailjioB

INCBIN gociioBHO BKIIouaeT GunapHbiii daiin B BBIXOIHOH (aili. DTo MoKeT ObITh [0JIe3HO (HAIIPUMED) s
BKJIIOUCHUS KADTUHOK W MY3bIKH HEIOCPEICTBEHHO B UCHOJHsIEMBI (aitn urpymku. OIHAKO, 9TO PEKOMEH-
JIyeTCsl JIeJIATh TOJIBKO JjIst HEOOJIBINX _ MOPIAN JAHHBIX. DTa MCEBJI0-MHCTPYKIHS MOYKET ObITh BbI3BaHA
TpeMsi Pa3HBIMHU CIIOCOOAMU:

incbin "file.dat" ; BKJIIOYEHHE paiiia IeTuKOM
incbin "file.dat",1024 ; mpomyck mepBeix 1024 OGaiir
incbin "file.dat",1024,512 ; npomyck mnepBbix 1024 u

; BKJIIOUEHHE cJegyiomux 512 OGair

2.2.4 EQU: Ompenesienne KOHCTAHT

EQU ormpenensier cumMBOJI J1jis YKA3aHHOI'O KOHCTAHTHOI'O 3HAYEHUs!: ecjin uctosibdyercss EQU, B 3roit cTpo-
Ke Kojla JIOJKHA npucyrcrBoBarh MeTKa. Cmbics “EQU — cBs3arh uMsi METKU €O 3HAUYEHHEM ee (TOJIBKO)
onepanja. lanHoe onpesenerue abCOJIOTHO U HE MOXKET ObITh MMO3Hee n3MeHeHo. Hampumep,

message db ’IlpuBer, dyden’
msglen equ $-message

ompegnessieT msglen kak koucrauTy 13. msglen He MoXKeT OBITH TO3/HEE IEPEOIIPEIETIEHO. JTO HE OIpee-
JIEHUE TIPENpOoIeccopa: 3HadeHne msglen o6pabaTbIBaeTCA 376Ch MOoAbKO 00uH Pa3 TIPU TOMOINA 3HAYEHUA $
(aro Takoe $ — cm. Pazmen 2.6) B MecTe onpesiesieHnst, BMECTO TOTO, ITOOBI 00pabaTBIBATCSI BE3E, IJIe HA ITO
CCBLIAIOTCS, IPH TOMOIIM 3Hadenust $ B mecre cebuikm. Vmeiite B Buy, uro onepang EQU Takxke sBiasgercsa
kpurndeckuM Boipazkenuem (Paznen 2.8).

2.2.5 TIMES: IloBTOp€HNEe MHCTPYKIINIT NIV JJAHHBIX

[Ipedukc TIMES 3acraBisier HHCTPYKIIUIO acceMOJINPOBATHCS HECKOJIBKO pa3. JlaHHas MCeBI0-MHCTPY KIS
oruactu npejcrasiser NASM-sksuBajenT cuarakcuca DUP, nmopnepxusaromierocss MASM-coBMecTuMBIME
accembiiepamu. Bbl MokeTe HammcaTh, HAIIPUMED

zerobuf : times 64 db 0

wiin 91o-T0 1oo6Hoe; ogHako TIMES Gosiee pasnocroponssis uacrpykius. Aprymesr TIMES — we npo-
CTO YUCJIOBAsT KOHCTAHTA, & YUCI0BOE 6biPUHCEHUE, TIOITOMY BBl MOXKETE MMUCATH CJIEIYIONINe BEIlH:

buffer: db ’IlpuBer, dyden’
times 64-$+buffer db ’

[Ipu sTOM Oy/1eT PE3ePBUPOBATHCS CTPOrO OIPEJIEIEHHOE IPOCTPAHCTBO, YTOOBI CHEJIATH HOJHYIO JJINHY
buffer mo 64 6aiir. Hakonerr, TIMES moxkeT ncmoms30BaThCs B OOBIMHBIX MHCTPYKIUAX, TAK ITO BBl MOXKETE
[MACATH TPUBHUAJbHBIE PA3BEPHYTHIE ITHKJIBL:

times 100 movsb

SamMeTnM, 9TO HET HUKAKON MPUHNUNNAIBLHON pasuuiisl Mexkay times 100 resb 1 u resb 100 3a uckiouenn-
€M TOr0, 4TO IIOCJIe/IHsAsT NHCTPYKIUs OyaeT obpabarsiBaThes npumepno B 100 pa3 ObicTpee u3-3a BHYTPEHHEH
CTPYKTYPBI accembJiepa.

Omnepany ncesno-uacrpyknuu TIMES, nogobro EQU, RESB u ee npy3sbsim, siBjisieTcst KpUTHIECKAM BbI-
paxenuem (Paznen 2.8).

Nwmeitre Takxke B Bumy, uro TIMES #e nmpumennma B makpocax: mpuaumHOil ciyzkut 10, uro TIMES
obpabarbiBaeTcs mocae Makpo-dasnl, mozBosisiionieit aprymenty TIMES comepkarh BbIpakenue, mo1o6H0e
64-3-+buffer. Tnsa noBropenns 6ojiee 0HON CTPOKK KOJIA WM B CJIOKHBIX MAKPOCAX UCIIONb3YHTe TUPEKTUBY
npemporeccopa %rep.

19

I'JIABA 2. A3BIK NASM

2.3 FEffective Addresses

An effective address is any operand to an instruction which references memory. Effective addresses, in NASM,
have a very simple syntax: they consist of an expression evaluating to the desired address, enclosed in square
brackets. For example:

wordvar dw 123
mov ax,[wordvar |
mov ax , [wordvar+1]
mov ax ,|[es:wordvar+bx]|

Anything not conforming to this simple system is not a valid memory reference in NASM, for example
esswordvar|[bx]|.

More complicated effective addresses, such as those involving more than one register, work in exactly the
same way:

mov eax ,[ebx*2+ecxtoffset |
mov ax ,[bp+di-+8§]|

NASM is capable of doing algebra on these effective addresses, so that things which don’t necessarily look
legal are perfectly all right:

mov eax ,[ebx*5]| ; assembles as [ebx*4+ebx]
mov eax ,[labell*2-label2]| ; ie [labell-+(labell -label2)]

Some forms of effective address have more than one assembled form; in most such cases NASM will
generate the smallest form it can. For example, there are distinct assembled forms for the 32-bit effective
addresses [eax*2+0] and [eax+eax]|, and NASM will generally generate the latter on the grounds that the
former requires four bytes to store a zero offset.

NASM has a hinting mechanism which will cause [eax-+ebx] and [ebx+eax] to generate different opcodes;
this is occasionally useful because [esi+ebp] and [ebp+-esi] have different default segment registers.

However, you can force NASM to generate an effective address in a particular form by the use of the
keywords BYTE, WORD, DWORD and NOSPLIT. If you need [eax+3] to be assembled using a double-
word offset field instead of the one byte NASM will normally generate, you can code [dword eax+3]. Similarly,
you can force NASM to use a byte offset for a small value which it hasn’t seen on the first pass (see Pazznen 2.8
for an example of such a code fragment) by using [byte eax+offset]. As special cases, [byte eax| will code
[eax+0] with a byte offset of zero, and [dword eax] will code it with a double-word offset of zero. The normal
form, [eax], will be coded with no offset field.

The form described in the previous paragraph is also useful if you are trying to access data in a 32-bit
segment from within 16 bit code. In particular, if you need to access data with a known offset that is larger
than will fit in a 16-bit value, if you don’t specify that it is a dword offset, NASM will cause the high word
of the offset to be lost.

Similarly, NASM will split [eax*2| into [eax}eax| because that allows the offset field to be absent and space
to be saved; in fact, it will also split [eax*2+offset] into [eax+eax+offset]. You can combat this behaviour by
the use of the NOSPLIT keyword: [nosplit eax*2| will force [eax*2+4-0] to be generated literally.

2.3.1 64-bit Displacements

In BITS 64 mode, displacements, for the most part, remain 32 bits and are sign extended prior to use. The
exception is one restricted form of the mov instruction: between an AL, AX, EAX, or RAX register and a 64-
bit absolute address (no registers are allowed in the effective address, and the address cannot be RIP-relative).
In NASM syntax, use of the 64-bit absolute form requires QWORD. Examples in NASM syntax:

mov eax, [1] ; 32 bit, with sign extension

mov al, [rax-1] ; 32 bit, with sign extension

mov al, [qword 0x1122334455667788] ; 64-bit absolute

mov al, [0x1122334455667788| ; truncated to 32-bit (warning)

20

2.4. IMMEDIATE OPERANDS

2.3.2 RIP Relative Addressing

In 64-bit mode, a new form of effective addressing is available to make it easier to write position-independent
code. Any memory reference may be made RIP relative (RIP is the instruction pointer register, which contains
the address of the location immediately following the current instruction).

In NASM syntax, there are two ways to specify RIP-relative addressing:

mov dword [rip+10], 1

stores the value 1 ten bytes after the end of the instruction. 10 can also be a symbolic constant, and will
be treated the same way. On the other hand,

mov dword [symb wrt rip]|, 1

stores the value 1 into the address of symbol symb. This is distinctly different than the behavior of:

mov dword [symb+rip], 1

which takes the address of the end of the instruction, adds the address of symb to it, then stores the value
1 there. If symb is a variable, this will not store the value 1 into the symb variable!

Yasm also supports the following syntax for RIP-relative addressing. The REL keyword makes it produce
RIP-relative addresses, while the ABS keyword makes it produce non-RIP-relative addresses:

mov [rel sym|, rax ; RIP-relative
mov [abs sym], rax ; not RIP-relative

The behavior of mov [sym], rax depends on a mode set by the DEFAULT directive (see Paznen 4.2), as
follows. The default mode at Yasm start-up is always ABS, and in REL mode, use of registers, a FS or GS
segment override, or an explicit ABS override will result in a non-RIP-relative effective address.

default rel

mov [sym]|, rbx ; RIP-relative

mov [abs sym], rbx ; not RIP-relative (explicit override)
mov [rbx+1], rbx ; not RIP-relative (register use)

mov [fs:sym], rbx ; not RIP-relative (fs or gs use)

mov [ds:sym], rbx ; RIP-relative (segment, but not fs or gs)
mov [rel sym], rbx ; RIP-relative (redundant override)

default abs

mov [sym], rbx ; not RIP-relative
mov [abs sym]|, rbx ; not RIP-relative
mov [rbx+1], rbx ; not RIP-relative
mov [fs:sym], rbx ; not RIP-relative
mov [ds:sym]|, rbx ; not RIP-relative
mov [rel sym], rbx ; RIP-relative (explicit override)

2.4 Immediate Operands

Immediate operands in NASM may be 8 bits, 16 bits, 32 bits, and even 64 bits in size. The immediate size
can be directly specified through the use of the BYTE, WORD, or DWORD keywords, respectively.

64 bit immediate operands are limited to direct 64-bit register move instructions in BITS 64 mode. For
all other instructions in 64-bit mode, immediate values remain 32 bits; their value is sign-extended into the
upper 32 bits of the target register prior to being used. The exception is the mov instruction, which can take
a 64-bit immediate when the destination is a 64-bit register.

All unsized immediate values in BITS 64 in Yasm default to 32-bit size for consistency. In order to get a
64-bit immediate with a label, specify the size explicitly with the QWORD keyword. For ease of use, Yasm
will also try to recognize 64-bit values and change the size to 64 bits automatically for these cases.

Examples in NASM syntax:

21

I'JIABA 2. A3BIK NASM

add rax, 1 ; optimized down to signed 8-bit

add rax, dword 1 ; force size to 32-Dbit

add rax, Oxffffffff ; sign-extended 32-bit

add rax, -1 ; same as above

add rax, Oxffffffffffffffff ; truncated to 32-bit (warning)
mov eax, 1 ; 5 byte

mov rax, 1 ; 5 byte (optimized to signed 32-bit)
mov rax, qword 1 ; 10 byte (forced 64-bit)

mov rbx, 0x1234567890abcdef ; 10 byte

mov rcx, Oxffffffff ; 10 byte (does not fit in signed 32-bit)
mov ecx, -1 ; 5 byte, equivalent to above

mov rcx, sym ; b byte, 32-bit size default for symbols
mov rcx, qword sym ; 10 byte, override default size

A caution for users using both Yasm and NASM 2.x: the handling of mov reg64, unsized immediate
is different between Yasm and NASM 2.x; YASM follows the above behavior, while NASM 2.x does the
following:

add rax, Oxffffffff ; sign-extended 32-bit immediate
add rax, -1 ; same as above

add rax, Oxf{ffff{ff{ffffffff ; truncated 32-bit (warning)
add rax, sym ; sign -extended 32-bit immediate
mov eax, 1 ; 5 byte (32-bit immediate)

mov rax, 1 ; 10 byte (64-bit immediate)
mov rbx, 0x1234567890abcdef ; 10 byte instruction
mov rcx, Oxffffffff ; 10 byte instruction

mov ecx, -1 ; b byte, equivalent to above
mov ecx, sym ; 5 byte (32-bit immediate)

mov rcx, sym ; 10 byte (64-bit immediate)
mov rcx, qword sym ; 10 byte, same as above

2.5 Constants

NASM understands four different types of constant: numeric, character, string and floating-point.

2.5.1 Numeric Constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of number bases,
in a variety of ways: you can suffix H, Q or O, and B for hex, octal, and binary, or you can prefix 0x for hex
in the style of C, or you can prefix $ for hex in the style of Borland Pascal. Note, though, that the $ prefix
does double duty as a prefix on identifiers (see Pasmen 2.1), so a hex number prefixed with a $ sign must
have a digit after the $ rather than a letter.

Some examples:

mov ax,100 ; decimal

mov ax,0a2h ; hex

mov ax , $0a2 ; hex again: the 0 is required
mov ax ,0xa2 ; hex yet again

mov ax,777q ; octal

mov ax,777o ; octal again

mov ax,10010011b ; binary

2.5.2 Character Constants

A character constant consists of up to four characters enclosed in either single or double quotes. The type
of quote makes no difference to NASM, except of course that surrounding the constant with single quotes
allows double quotes to appear within it and vice versa.

22

2.6. EXPRESSIONS

A character constant with more than one character will be arranged with little-endian order in mind: if
you code

mov eax , abcd’

then the constant generated is not 0x61626364, but 0x64636261, so that if you were then to store the value
into memory, it would read abcd rather than dcba. This is also the sense of character constants understood
by the Pentium’s CPUID instruction.

2.5.3 String Constants

String constants are only acceptable to some pseudo-instructions, namely the DB family and INCBIN.
A string constant looks like a character constant, only longer. It is treated as a concatenation of maximum-
size character constants for the conditions. So the following are equivalent:

db ’hello’ ; string constant
db 'h’,’e’,’17,’1",’0" ; equivalent character constants

And the following are also equivalent:

dd ’'ninechars’ ; doubleword string constant
dd ’nine’,’char’,’s’ ; becomes three doublewords
db ’ninechars’,0,0,0 ; and really looks like this

Note that when used as an operand to db, a constant like ’ab’ is treated as a string constant despite being
short enough to be a character constant, because otherwise db ’ab’ would have the same effect as db ’a’,
which would be silly. Similarly, three-character or four-character constants are treated as strings when they
are operands to dw.

2.5.4 Floating-Point Constants

Floating-point constants are acceptable only as arguments to DW, DD, DQ and DT. They are expressed in
the traditional form: digits, then a period, then optionally more digits, then optionally an E followed by an
exponent. The period is mandatory, so that NASM can distinguish between dd 1, which declares an integer
constant, and dd 1.0 which declares a floating-point constant.

Some examples:

dw -0.5 ; IEEE half precision
dd 1.2 ; an easy one

dg 1.el0 ; 10,000,000,000

dq 1.e+10 ; synonymous with 1.el0
dq 1.e-10 ; 0.000 000 000 1

dt 3.141592653589793238462 ; pi

NASM cannot do compile-time arithmetic on floating-point constants. This is because NASM is designed
to be portable - although it always generates code to run on x86 processors, the assembler itself can run on any
system with an ANSI C compiler. Therefore, the assembler cannot guarantee the presence of a floating-point
unit capable of handling the Intel number formats, and so for NASM to be able to do floating arithmetic it
would have to include its own complete set of floating-point routines, which would significantly increase the
size of the assembler for very little benefit.

2.6 Expressions

Expressions in NASM are similar in syntax to those in C.

NASM does not guarantee the size of the integers used to evaluate expressions at compile time: since
NASM can compile and run on 64-bit systems quite happily, don’t assume that expressions are evaluated in
32-bit registers and so try to make deliberate use of ((integer overflow)). It might not always work. The only
thing NASM will guarantee is what’s guaranteed by ANSI C: you always have at least 32 bits to work in.

23

I'JIABA 2. A3BIK NASM

NASM supports two special tokens in expressions, allowing calculations to involve the current assembly
position: the $ and $$ tokens. $ evaluates to the assembly position at the beginning of the line containing
the expression; so you can code an infinite loop using JMP $. $$ evaluates to the beginning of the current
section; so you can tell how far into the section you are by using ($-$$).

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.

2.6.1 |: Bitwise OR Operator

The | operator gives a bitwise OR, exactly as performed by the OR machine instruction. Bitwise OR is the
lowest-priority arithmetic operator supported by NASM.

2.6.2 ": Bitwise XOR Operator

" provides the bitwise XOR operation.

2.6.3 &: Bitwise AND Operator

& provides the bitwise AND operation.

2.6.4 << and >>: Bit Shift Operators

<< gives a bit-shift to the left, just as it does in C. So 5<<3 evaluates to 5 times 8, or 40. >> gives a
bit-shift to the right; in NASM, such a shift is always unsigned, so that the bits shifted in from the left-hand
end are filled with zero rather than a sign-extension of the previous highest bit.

2.6.5 -+ and -: Addition and Subtraction Operators

The + and - operators do perfectly ordinary addition and subtraction.

26.6 * /,//, % and %%: Multiplication and Division

* is the multiplication operator. / and // are both division operators: / is unsigned division and // is signed
division. Similarly, % and %% provide unsigned and signed modulo operators respectively.
NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo operator.
Since the % character is used extensively by the macro preprocessor, you should ensure that both the
signed and unsigned modulo operators are followed by white space wherever they appear.

2.6.7 Unary Operators: +, -, ~ and SEG

The highest-priority operators in NASM’s expression grammar are those which only apply to one argument. -
negates its operand, + does nothing (it’s provided for symmetry with -), = computes the one’s complement of
its operand, and SEG provides the segment address of its operand (explained in more detail in Pazmen 2.6.8).

2.6.8 SEG and WRT

When writing large 16-bit programs, which must be split into multiple segments, it is often necessary to be
able to refer to the segment part of the address of a symbol. NASM supports the SEG operator to perform
this function.

The SEG operator returns the preferred segment base of a symbol, defined as the segment base relative
to which the offset of the symbol makes sense. So the code

mov ax, seg symbol
mov es, ax
mov bx, symbol

24

2.7. STRICT: INHIBITING OPTIMIZATION

will load es:bx with a valid pointer to the symbol symbol.

Things can be more complex than this: since 16-bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one. NASM
lets you do this, by the use of the WRT (With Reference To) keyword. So you can do things like

mov ax, weird seg ; weird seg is a segment base
mov es, ax
mov bx, symbol wrt weird seg

to load es:bx with a different, but functionally equivalent, pointer to the symbol symbol.
NASM supports far (inter-segment) calls and jumps by means of the syntax call segment:offset, where
segment and offset both represent immediate values. So to call a far procedure, you could code either of

call (seg procedure):procedure
call weird seg:(procedure wrt weird seg)

(The parentheses are included for clarity, to show the intended parsing of the above instructions. They
are not necessary in practice.)

NASM supports the syntax call far procedure as a synonym for the first of the above usages. JMP works
identically to CALL in these examples.

To declare a far pointer to a data item in a data segment, you must code

dw symbol, seg symbol

NASM supports no convenient synonym for this, though you can always invent one using the macro
processor.

2.7 STRICT: Inhibiting Optimization

When assembling with the optimizer set to level 2 or higher, NASM will use size specifiers (BYTE, WORD,
DWORD, QWORD, or TWORD), but will give them the smallest possible size. The keyword STRICT can
be used to inhibit optimization and force a particular operand to be emitted in the specified size. For example,
with the optimizer on, and in BITS 16 mode,

push dword 33

is encoded in three bytes 66 6A 21, whereas

push strict dword 33

is encoded in six bytes, with a full dword immediate operand 66 68 21 00 00 00.

2.8 Critical Expressions

A limitation of NASM is that it is a two-pass assembler; unlike TASM and others, it will always do exactly
two assembly passes. Therefore it is unable to cope with source files that are complex enough to require three
or more passes.

The first pass is used to determine the size of all the assembled code and data, so that the second pass,
when generating all the code, knows all the symbol addresses the code refers to. So one thing NASM can’t
handle is code whose size depends on the value of a symbol declared after the code in question. For example,

times (label-$) db 0
label: db >Where am 17’

The argument to TIMES in this case could equally legally evaluate to anything at all; NASM will reject
this example because it cannot tell the size of the TIMES line when it first sees it. It will just as firmly reject
the slightly paradoxical code

times (label-$+1) db 0
label: db 'NOW where am 17’

25

I'JIABA 2. A3BIK NASM

in which any value for the TIMES argument is by definition wrong!

NASM rejects these examples by means of a concept called a critical expression, which is defined to be
an expression whose value is required to be computable in the first pass, and which must therefore depend
only on symbols defined before it. The argument to the TIMES prefix is a critical expression; for the same
reason, the arguments to the RESB family of pseudo-instructions are also critical expressions.

Critical expressions can crop up in other contexts as well: consider the following code.

mov ax, symboll
symboll equ symbol2
symbol2:

On the first pass, NASM cannot determine the value of symboll, because symboll is defined to be equal
to symbol2 which NASM hasn’t seen yet. On the second pass, therefore, when it encounters the line mov
ax,symboll, it is unable to generate the code for it because it still doesn’t know the value of symboll. On the
next line, it would see the EQU again and be able to determine the value of symboll, but by then it would
be too late.

NASM avoids this problem by defining the right-hand side of an EQU statement to be a critical expression,
so the definition of symboll would be rejected in the first pass.

There is a related issue involving forward references: consider this code fragment.

mov eax, [ebxtoffset |
offset equ 10

NASM, on pass one, must calculate the size of the instruction mov eax,[ebx+offset] without knowing the
value of offset. It has no way of knowing that offset is small enough to fit into a one-byte offset field and that
it could therefore get away with generating a shorter form of the effective-address encoding; for all it knows,
in pass one, offset could be a symbol in the code segment, and it might need the full four-byte form. So it is
forced to compute the size of the instruction to accommodate a four-byte address part. In pass two, having
made this decision, it is now forced to honour it and keep the instruction large, so the code generated in this
case is not as small as it could have been. This problem can be solved by defining offset before using it, or
by forcing byte size in the effective address by coding [byte ebx-+offset].

2.9 Local Labels

NASM gives special treatment to symbols beginning with a period. A label beginning with a single period is
treated as a local label, which means that it is associated with the previous non-local label. So, for example:

labell ; some code
.loop ; some more code
jne .loop
ret
label2 ; some code
.loop ; some more code
jne .loop
ret

In the above code fragment, each JNE instruction jumps to the line immediately before it, because the
two definitions of .loop are kept separate by virtue of each being associated with the previous non-local label.

NASM goes one step further, in allowing access to local labels from other parts of the code. This is
achieved by means of defining a local label in terms of the previous non-local label: the first definition of
Jloop above is really defining a symbol called labell.loop, and the second defines a symbol called label2.loop.
So, if you really needed to, you could write

label3 ; some more code
; and some more
jmp labell .loop

Sometimes it is useful - in a macro, for instance - to be able to define a label which can be referenced from
anywhere but which doesn’t interfere with the normal local-label mechanism. Such a label can’t be non-local

26

2.9. LOCAL LABELS

because it would interfere with subsequent definitions of, and references to, local labels; and it can’t be local
because the macro that defined it wouldn’t know the label’s full name. NASM therefore introduces a third
type of label, which is probably only useful in macro definitions: if a label begins with the special prefix ..@,
then it does nothing to the local label mechanism. So you could code

labell: ; a non-local label
.local: ; this is really labell.local
..@foo: ; this is a special symbol
label2: ; another non-local label
.local: ; this is really label2.local
jmp .. @foo ; this will jump three lines up

NASM has the capacity to define other special symbols beginning with a double period: for example,
..start is used to specify the entry point in the obj output format.

27

['taBa 3

The NASM Preprocessor

NASM contains a powerful macro processor, which supports conditional assembly, multi-level file inclusion,
two forms of macro (single-line and multi-line), and a «context stack» mechanism for extra macro power.
Preprocessor directives all begin with a % sign.

The preprocessor collapses all lines which end with a backslash (\) character into a single line. Thus:

%define THIS VERY LONG MACRO NAME IS DEFINED TO \
THIS_VALUE

will work like a single-line macro without the backslash-newline sequence.

3.1 Single-Line Macros

3.1.1 The Normal Way: %define

Single-line macros are defined using the %define preprocessor directive. The definitions work in a similar way
to C; so you can do things like

%define ctrl 0x1F &
%define param(a,b) ((a)+(a)*(b))

mov byte [param(2,ebx)], ctrl 'D’

which will expand to

mov byte [(2)+(2)*(ebx)]|, O0x1F & ’D’

When the expansion of a single-line macro contains tokens which invoke another macro, the expansion is
performed at invocation time, not at definition time. Thus the code

%define a(x) 14+Db(x)
%define b(x) 2%x

mov ax,a(8)

will evaluate in the expected way to mov ax,1+2*8, even though the macro b wasn’t defined at the time
of definition of a.

Macros defined with %define are case sensitive: after %define foo bar, only foo will expand to bar: Foo or
FOO will not. By using %idefine instead of %define (the «i» stands for «insensitive») you can define all the
case variants of a macro at once, so that %idefine foo bar would cause foo, Foo, FOO, fOO and so on all to
expand to bar.

There is a mechanism which detects when a macro call has occurred as a result of a previous expansion
of the same macro, to guard against circular references and infinite loops. If this happens, the preprocessor
will only expand the first occurrence of the macro. Hence, if you code

29

I'JTABA 3. THE NASM PREPROCESSOR

%define a(x) 1+a(x)
mov ax,a(3)

the macro a(3) will expand once, becoming 1+a(3), and will then expand no further. This behaviour can
be useful.
You can overload single-line macros: if you write

%define foo (x) 14x
%define foo(x,y) l4+x*y
the preprocessor will be able to handle both types of macro call, by counting the parameters you pass; so
foo(3) will become 143 whereas foo(ebx,2) will become 1+ebx*2. However, if you define
%define foo bar
then no other definition of foo will be accepted: a macro with no parameters prohibits the definition of

the same name as a macro with parameters, and vice versa.
This doesn’t prevent single-line macros being redefined: you can perfectly well define a macro with

%define foo bar

and then re-define it later in the same source file with
%define foo baz
Then everywhere the macro foo is invoked, it will be expanded according to the most recent definition.

This is particularly useful when defining single-line macros with %assign (see Paznein 3.1.5).
You can pre-define single-line macros using the «-D» option on the Yasm command line: see Pazmes 1.3.3.1.

3.1.2 Enhancing %define: %xdefine

To have a reference to an embedded single-line macro resolved at the time that it is embedded, as opposed
to when the calling macro is expanded, you need a different mechanism to the one offered by %define. The
solution is to use %xdefine, or its case-insensitive counterpart %xidefine.

Suppose you have the following code:

%define isTrue 1
%define isFalse isTrue
%define isTrue O

vall: db isFalse
%define isTrue 1

val2: db isFalse

In this case, vall is equal to 0, and val2 is equal to 1. This is because, when a single-line macro is defined
using %define, it is expanded only when it is called. As isFalse expands to isTrue, the expansion will be the
current value of isTrue. The first time it is called that is 0, and the second time it is 1.

If you wanted isFalse to expand to the value assigned to the embedded macro isTrue at the time that
isFalse was defined, you need to change the above code to use %xdefine.

%xdefine isTrue 1
%xdefine isFalse isTrue
%xdefine isTrue 0

vall: db isFalse

%xdefine isTrue 1

val2: db isFalse

30

3.1. SINGLE-LINE MACROS

Now, each time that isFalse is called, it expands to 1, as that is what the embedded macro isTrue expanded
to at the time that isFalse was defined.

3.1.3 Concatenating Single Line Macro Tokens: %+

Individual tokens in single line macros can be concatenated, to produce longer tokens for later processing.
This can be useful if there are several similar macros that perform similar functions.
As an example, consider the following:

%define BDASTART 400h ; Start of BIOS data area
struc tBIOSDA ; its structure
.COM1laddr RESW 1
.COM2addr RESW 1

; ..and so on
endstruc

Now, if we need to access the elements of tBIOSDA in different places, we can end up with:

mov ax ,BDASTART + tBIOSDA .COM1laddr
mov bx ,BDASTART + tBIOSDA .COM2addr

This will become pretty ugly (and tedious) if used in many places, and can be reduced in size significantly
by using the following macro:

; Macro to access BIOS variables by their names (from tBDA):
%define BDA(x) BDASTART + tBIOSDA. %+ x

Now the above code can be written as:

mov ax ,BDA(COM1laddr)
mov bx ,BDA(COM2addr)

Using this feature, we can simplify references to a lot of macros (and, in turn, reduce typing errors).

3.1.4 Undefining macros: %undef
Single-line macros can be removed with the %undef command. For example, the following sequence:

%define foo bar
%undef foo

mov eax, foo

will expand to the instruction mov eax, foo, since after %undef the macro foo is no longer defined.
Macros that would otherwise be pre-defined can be undefined on the command-line using the «-Us option
on the Yasm command line: see Paznen 1.3.3.5.

3.1.5 Preprocessor Variables: %assign

An alternative way to define single-line macros is by means of the %assign command (and its case-insensitive
counterpart %iassign, which differs from %assign in exactly the same way that %idefine differs from %define).
Y%assign is used to define single-line macros which take no parameters and have a numeric value. This
value can be specified in the form of an expression, and it will be evaluated once, when the %assign directive
is processed.
Like %define, macros defined using %assign can be re-defined later, so you can do things like

Y%assign i i+1

31

I'JTABA 3. THE NASM PREPROCESSOR

to increment the numeric value of a macro.

Yassign is useful for controlling the termination of %rep preprocessor loops: see Paznen 3.5 for an example
of this.

The expression passed to %assign is a critical expression (see Pasmen 2.8), and must also evaluate to a
pure number (rather than a relocatable reference such as a code or data address, or anything involving a
register).

3.2 String Handling in Macros

It’s often useful to be able to handle strings in macros. NASM supports two simple string handling macro
operators from which more complex operations can be constructed.

3.2.1 String Length: %strlen

The %strlen macro is like %assign macro in that it creates (or redefines) a numeric value to a macro. The
difference is that with %strlen, the numeric value is the length of a string. An example of the use of this
would be:

%strlen charcnt ’my string’
y g

In this example, charcnt would receive the value 8, just as if an %assign had been used. In this example,
‘my string’ was a literal string but it could also have been a single-line macro that expands to a string, as in
the following example:

%define sometext ’'my string’
%strlen charcnt sometext

As in the first case, this would result in charcnt being assigned the value of 8.

3.2.2 Sub-strings: %substr

Individual letters in strings can be extracted using %substr. An example of its use is probably more useful
than the description:

’ ; equivalent to %define mychar ’x

; equivalent to %define mychar 'y
; equivalent to %define mychar ’z

%substr mychar ’xyz
%substr mychar ’xyz
%substr mychar ’xyz

)

W N =

bl

In this example, mychar gets the value of 'y’. As with %strlen (see Paznen 3.2.1), the first parameter is
the single-line macro to be created and the second is the string. The third parameter specifies which character
is to be selected. Note that the first index is 1, not 0 and the last index is equal to the value that %strlen
would assign given the same string. Index values out of range result in an empty string.

3.3 Multi-Line Macros

Multi-line macros are much more like the type of macro seen in MASM and TASM: a multi-line macro
definition in NASM looks something like this.

Y%macro prologue 1

push ebp

mov ebp , esp

sub esp,%1
Y%endmacro

This defines a C-like function prologue as a macro: so you would invoke the macro with a call such as

myfunc: prologue 12

32

3.3. MULTI-LINE MACROS

which would expand to the three lines of code

myfunc: push ebp
mov ebp, esp
sub esp,12

The number 1 after the macro name in the %macro line defines the number of parameters the macro
prologue expects to receive. The use of %1 inside the macro definition refers to the first parameter to the
macro call. With a macro taking more than one parameter, subsequent parameters would be referred to as
%2, %3 and so on.

Multi-line macros, like single-line macros, are case-sensitive, unless you define them using the alternative
directive %imacro.

If you need to pass a comma as part of a parameter to a multi-line macro, you can do that by enclosing
the entire parameter in braces. So you could code things like

Y%macro silly 2

%2: db %1
Y%endmacro
silly ’a’, letter a ; letter _a: db ’a’
silly ’ab’, string ab ; string ab: db ’ab’
silly {13,10}, crlf ; crlf: db 13,10

3.3.1 Overloading Multi-Line Macros

As with single-line macros, multi-line macros can be overloaded by defining the same macro name several
times with different numbers of parameters. This time, no exception is made for macros with no parameters
at all. So you could define

Y%macro prologue 0

push ebp
mov ebp , esp
Y%endmacro

to define an alternative form of the function prologue which allocates no local stack space.
Sometimes, however, you might want to «overload» a machine instruction; for example, you might want
to define

%macro push 2

push %1
push %2
%endmacro

so that you could code

push ebx ; this line is not a macro call
push eax ,ecx ; but this one is

Ordinarily, NASM will give a warning for the first of the above two lines, since push is now defined to
be a macro, and is being invoked with a number of parameters for which no definition has been given. The
correct code will still be generated, but the assembler will give a warning. This warning can be disabled by
the use of the -wno-macro-params command-line option (see Pazzen 1.3.2).

33

I'JTABA 3. THE NASM PREPROCESSOR

3.3.2 Macro-Local Labels

NASM allows you to define labels within a multi-line macro definition in such a way as to make them local
to the macro call: so calling the same macro multiple times will use a different label each time. You do this
by prefixing %% to the label name. So you can invent an instruction which executes a RET if the Z flag is
set by doing this:

Y%macro retz 0

jnz Y%%skip
ret
Y% skip :

%endmacro

You can call this macro as many times as you want, and every time you call it NASM will make up a
different «real» name to substitute for the label %%skip. The names NASM invents are of the form ..@2345-
.skip, where the number 2345 changes with every macro call. The ..Q@ prefix prevents macro-local labels from
interfering with the local label mechanism, as described in Pazner 2.9. You should avoid defining your own
labels in this form (the ..Q@ prefix, then a number, then another period) in case they interfere with macro-local
labels.

3.3.3 Greedy Macro Parameters

Occasionally it is useful to define a macro which lumps its entire command line into one parameter definition,
possibly after extracting one or two smaller parameters from the front. An example might be a macro to
write a text string to a file in MS-DOS, where you might want to be able to write

writefile [filehandle],"hello, world",13,10

NASM allows you to define the last parameter of a macro to be greedy, meaning that if you invoke the
macro with more parameters than it expects, all the spare parameters get lumped into the last defined one
along with the separating commas. So if you code:

Y%macro writefile 2+

jmp Y%%endstr
T%str db %2
Y%Pendstr :
mov dx,%%str
mov cx, %% endstr-%%str
mov bx,%1
mov ah,0x40
int 0x21
Y%endmacro

then the example call to writefile above will work as expected: the text before the first comma, [filehandle],
is used as the first macro parameter and expanded when %1 is referred to, and all the subsequent text is
lumped into %2 and placed after the db.

The greedy nature of the macro is indicated to NASM by the use of the + sign after the parameter count
on the %macro line.

If you define a greedy macro, you are effectively telling NASM how it should expand the macro given
any number of parameters from the actual number specified up to infinity; in this case, for example, NASM
now knows what to do when it sees a call to writefile with 2, 3, 4 or more parameters. NASM will take this
into account when overloading macros, and will not allow you to define another form of writefile taking 4
parameters (for example).

Of course, the above macro could have been implemented as a non-greedy macro, in which case the call
to it would have had to look like

writefile [filehandle|, {"hello, world",13,10}

34

3.3. MULTI-LINE MACROS

NASM provides both mechanisms for putting ((commas in macro parameters)), and you choose which
one you prefer for each macro definition.
See Paznen 4.3.3 for a better way to write the above macro.

3.3.4 Default Macro Parameters

NASM also allows you to define a multi-line macro with a range of allowable parameter counts. If you do
this, you can specify defaults for omitted parameters. So, for example:

Y%macro die 0-1 "Painful program death has occurred."

writefile 2,%1

mov ax,0x4c01
int 0x21
%endmacro

This macro (which makes use of the writefile macro defined in Pazzen 3.3.3) can be called with an explicit
error message, which it will display on the error output stream before exiting, or it can be called with no
parameters, in which case it will use the default error message supplied in the macro definition.

In general, you supply a minimum and maximum number of parameters for a macro of this type; the
minimum number of parameters are then required in the macro call, and then you provide defaults for the
optional ones. So if a macro definition began with the line

Y%macro foobar 1-3 eax,|[ebx+2]

then it could be called with between one and three parameters, and %1 would always be taken from the
macro call. %2, if not specified by the macro call, would default to eax, and %3 if not specified would default
to [ebx+2].

You may omit parameter defaults from the macro definition, in which case the parameter default is taken
to be blank. This can be useful for macros which can take a variable number of parameters, since the %0
token (see Pazzen 3.3.5) allows you to determine how many parameters were really passed to the macro call.

This defaulting mechanism can be combined with the greedy-parameter mechanism; so the die macro
above could be made more powerful, and more useful, by changing the first line of the definition to

Y%macro die 0-1+ "Painful program death has occurred.",13,10

The maximum parameter count can be infinite, denoted by *. In this case, of course, it is impossible to
provide a full set of default parameters. Examples of this usage are shown in Paznein 3.3.6.

3.3.5 %0: Macro Parameter Counter

For a macro which can take a variable number of parameters, the parameter reference %0 will return a
numeric constant giving the number of parameters passed to the macro. This can be used as an argument
to %rep (see Pasmen 3.5) in order to iterate through all the parameters of a macro. Examples are given in
Pazngen 3.3.6.

3.3.6 Y%rotate: Rotating Macro Parameters

Unix shell programmers will be familiar with the shift shell command, which allows the arguments passed to
a shell script (referenced as $1, $2 and so on) to be moved left by one place, so that the argument previously
referenced as $2 becomes available as $1, and the argument previously referenced as $1 is no longer available
at all.

NASM provides a similar mechanism, in the form of %rotate. As its name suggests, it differs from the
Unix shift in that no parameters are lost: parameters rotated off the left end of the argument list reappear
on the right, and vice versa.

%rotate is invoked with a single numeric argument (which may be an expression). The macro parameters
are rotated to the left by that many places. If the argument to %rotate is negative, the macro parameters
are rotated to the right.

35

I'JTABA 3. THE NASM PREPROCESSOR

So a pair of macros to save and restore a set of registers might work as follows:

Y%macro multipush 1-*

Y%rep %0

push %1
%rotate 1
Y%endrep

%endmacro

This macro invokes the PUSH instruction on each of its arguments in turn, from left to right. It begins
by pushing its first argument, %1, then invokes %rotate to move all the arguments one place to the left, so
that the original second argument is now available as %1. Repeating this procedure as many times as there
were arguments (achieved by supplying %0 as the argument to %rep) causes each argument in turn to be
pushed.

Note also the use of * as the maximum parameter count, indicating that there is no upper limit on the
number of parameters you may supply to the multipush macro.

It would be convenient, when using this macro, to have a POP equivalent, which didn’t require the
arguments to be given in reverse order. Ideally, you would write the multipush macro call, then cut-and-paste
the line to where the pop needed to be done, and change the name of the called macro to multipop, and the
macro would take care of popping the registers in the opposite order from the one in which they were pushed.

This can be done by the following definition:

%macro multipop 1-*

Y%rep %0
Y%rotate -1

pop %1
Y%endrep

%endmacro

This macro begins by rotating its arguments one place to the right, so that the original last argument
appears as %1. This is then popped, and the arguments are rotated right again, so the second-to-last argument
becomes %1. Thus the arguments are iterated through in reverse order.

3.3.7 Concatenating Macro Parameters

NASM can concatenate macro parameters on to other text surrounding them. This allows you to declare a
family of symbols, for example, in a macro definition. If, for example, you wanted to generate a table of key
codes along with offsets into the table, you could code something like

Y%macro keytab entry 2

keypos%l equ $-keytab
db %2
Y%endmacro
keytab:

keytab entry F1,128+1
keytab entry F2,128+2
keytab entry Return,13

which would expand to

keytab:

keyposF1 equ $-keytab
db 128+1

keyposF2 equ $-keytab

36

3.3. MULTI-LINE MACROS

db 128+2
keyposReturn equ $-keytab
db 13

You can just as easily concatenate text on to the other end of a macro parameter, by writing %1foo.

If you need to append a digit to a macro parameter, for example defining labels fool and foo2 when
passed the parameter foo, you can’t code %11 because that would be taken as the eleventh macro parameter.
Instead, you must code %{1}1, which will separate the first 1 (giving the number of the macro parameter)
from the second (literal text to be concatenated to the parameter).

This concatenation can also be applied to other preprocessor in-line objects, such as macro-local labels
(Pazmen 3.3.2) and context-local labels (Pasmen 3.7.2). In all cases, ambiguities in syntax can be resolved by
enclosing everything after the % sign and before the literal text in braces: so %{%foo}bar concatenates the
text bar to the end of the real name of the macro-local label %%foo. (This is unnecessary, since the form
NASM uses for the real names of macro-local labels means that the two usages %{%foo}bar and %%foobar
would both expand to the same thing anyway; nevertheless, the capability is there.)

3.3.8 Condition Codes as Macro Parameters

NASM can give special treatment to a macro parameter which contains a condition code. For a start, you
can refer to the macro parameter %1 by means of the alternative syntax %-+1, which informs NASM that
this macro parameter is supposed to contain a condition code, and will cause the preprocessor to report an
error message if the macro is called with a parameter which is not a valid condition code.

Far more usefully, though, you can refer to the macro parameter by means of %-1, which NASM will
expand as the inverse condition code. So the retz macro defined in Pazmen 3.3.2 can be replaced by a general
conditional-return macro like this:

Y%macro retc 1

j%-1 Y%skip
ret
Y skip :

%endmacro

This macro can now be invoked using calls like retc ne, which will cause the conditional-jump instruction
in the macro expansion to come out as JE, or retc po which will make the jump a JPE.

The %+1 macro-parameter reference is quite happy to interpret the arguments CXZ and ECXZ as valid
condition codes; however, %-1 will report an error if passed either of these, because no inverse condition code
exists.

3.3.9 Disabling Listing Expansion

When NASM is generating a listing file from your program, it will generally expand multi-line macros by
means of writing the macro call and then listing each line of the expansion. This allows you to see which
instructions in the macro expansion are generating what code; however, for some macros this clutters the
listing up unnecessarily.

NASM therefore provides the .nolist qualifier, which you can include in a macro definition to inhibit the

expansion of the macro in the listing file. The .nolist qualifier comes directly after the number of parameters,
like this:

Y%macro foo 1.nolist

Or like this:

Y%macro bar 1-5-+.nolist a,b,c,d,e,f,g,h

37

I'JTABA 3. THE NASM PREPROCESSOR

3.4 Conditional Assembly

Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if certain conditions
are met. The general syntax of this feature looks like this:

%if <condition >

; some code which only appears if <condition> is met
%elif <condition2>

; only appears if <condition> is not met but <condition2> is
%else

; this appears if neither <condition> nor <condition2> was met
Y%endif

The %else clause is optional, as is the %elif clause. You can have more than one %elif clause as well.

3.4.1 %ifdef: Testing Single-Line Macro Existence

Beginning a conditional-assembly block with the line %ifdef MACRO will assemble the subsequent code if,
and only if, a single-line macro called MACRO is defined. If not, then the %elif and %else blocks (if any)
will be processed instead.

For example, when debugging a program, you might want to write code such as

; perform some function
%ifdef DEBUG

writefile 2,"Function performed successfully" 13,10
Y%endif

; go and do something else

Then you could use the command-line option -D DEBUG to create a version of the program which
produced debugging messages, and remove the option to generate the final release version of the program.

You can test for a macro not being defined by using %ifndef instead of %ifdef. You can also test for macro
definitions in %elif blocks by using %elifdef and %elifndef.

3.4.2 %ifmacro: Testing Multi-Line Macro Existence

The %ifmacro directive operates in the same way as the %ifdef directive, except that it checks for the existence
of a multi-line macro.

For example, you may be working with a large project and not have control over the macros in a library.
You may want to create a macro with one name if it doesn’t already exist, and another name if one with
that name does exist.

The %ifmacro is considered true if defining a macro with the given name and number of arguments would
cause a definitions conflict. For example:

%ifmacro MyMacro 1-3
%error "MyMacro 1-3" causes a conflict with an existing macro.
%else
Y%macro MyMacro 1-3
; insert code to define the macro
Y%endmacro

%endif

This will create the macro MyMacro 1-3 if no macro already exists which would conflict with it, and emits
a warning if there would be a definition conflict.

You can test for the macro not existing by using the %ifnmacro instead of %ifmacro. Additional tests can
be performed in %elif blocks by using %elifmacro and %elifnmacro.

38

3.4. CONDITIONAL ASSEMBLY

3.4.3 Yifctx: Testing the Context Stack

The conditional-assembly construct %ifctx ctxname will cause the subsequent code to be assembled if and
only if the top context on the preprocessor’s context stack has the name ctxname. As with %ifdef, the inverse
and %elif forms %ifnctx, %elifctx and %elifnctx are also supported.

For more details of the context stack, see Pazmen 3.7. For a sample use of %ifctx, see Pazmen 3.7.5.

3.4.4 %if: Testing Arbitrary Numeric Expressions

The conditional-assembly construct %if expr will cause the subsequent code to be assembled if and only if
the value of the numeric expression expr is non-zero. An example of the use of this feature is in deciding
when to break out of a %rep preprocessor loop: see Pazmen 3.5 for a detailed example.

The expression given to %if, and its counterpart %elif, is a critical expression (see Paznen 2.8).

%if extends the normal NASM expression syntax, by providing a set of relational operators which are not
normally available in expressions. The operators =, <, >, <=, >= and <> test equality, less-than, greater-
than, less-or-equal, greater-or-equal and not-equal respectively. The C-like forms == and != are supported
as alternative forms of = and <>. In addition, low-priority logical operators &&, "" and || are provided,
supplying logical AND, logical XOR and logical OR. These work like the C logical operators (although C has
no logical XOR), in that they always return either 0 or 1, and treat any non-zero input as 1 (so that *", for
example, returns 1 if exactly one of its inputs is zero, and 0 otherwise). The relational operators also return
1 for true and 0 for false.

3.4.5 %ifidn and %ifidni: Testing Exact Text Identity

The construct %ifidn text1,text2 will cause the subsequent code to be assembled if and only if textl and text2,
after expanding single-line macros, are identical pieces of text. Differences in white space are not counted.
%ifidni is similar to %ifidn, but is case-insensitive.
For example, the following macro pushes a register or number on the stack, and allows you to treat IP as
a real register:

Y%macro pushparam 1

%ifidni %1,ip

call Y%label
Y%%label :
%else

push %1
%endif

%endmacro

Like most other %if constructs, %ifidn has a counterpart %elifidn, and negative forms %ifnidn and %eli-
fnidn. Similarly, %ifidni has counterparts %elifidni, %ifnidni and %elifnidni.

3.4.6 %ifid, %ifnum, %ifstr: Testing Token Types

Some macros will want to perform different tasks depending on whether they are passed a number, a string,
or an identifier. For example, a string output macro might want to be able to cope with being passed either
a string constant or a pointer to an existing string.

The conditional assembly construct %ifid, taking one parameter (which may be blank), assembles the
subsequent code if and only if the first token in the parameter exists and is an identifier. %ifnum works
similarly, but tests for the token being a numeric constant; %ifstr tests for it being a string.

For example, the writefile macro defined in Pazmen 3.3.3 can be extended to take advantage of %ifstr in
the following fashion:

Y%macro writefile 2-3-+

%ifstr %2
jmp Y%%endstr

39

I'JTABA 3. THE NASM PREPROCESSOR

%if %0 = 3
Yostr : db %2,%3
%else
Yostr : db %2
Y%endif
Y%%endstr: mov dx,%%str
mov cx,%%endstr-%%str
%else
mov dx, %2
mov cx,%3
Y%endif
mov bx,%1
mov ah,0x40
int 0x21
%endmacro

Then the writefile macro can cope with being called in either of the following two ways:

writefile [file]|, strpointer, length
writefile [file], "hello", 13, 10

In the first, strpointer is used as the address of an already-declared string, and length is used as its length;
in the second, a string is given to the macro, which therefore declares it itself and works out the address and
length for itself.

Note the use of %if inside the %ifstr: this is to detect whether the macro was passed two arguments (so
the string would be a single string constant, and db %2 would be adequate) or more (in which case, all but
the first two would be lumped together into %3, and db %2,%3 would be required).

The usual %elif XXX, %ifnXXX and %elifnXXX versions exist for each of %ifid, %ifnum and %ifstr.

3.4.7 %error: Reporting User-Defined Errors

The preprocessor directive %error will cause NASM to report an error if it occurs in assembled code. So if
other users are going to try to assemble your source files, you can ensure that they define the right macros
by means of code like this:

%ifdef SOME MACRO
; do some setup
%elifdef SOME OTHER MACRO
; do some different setup
%else
%error Neither SOME MACRO nor SOME OTHER MACRO was defined .
Y%endif

Then any user who fails to understand the way your code is supposed to be assembled will be quickly
warned of their mistake, rather than having to wait until the program crashes on being run and then not
knowing what went wrong.

3.5 Preprocessor Loops

NASM’s TIMES prefix, though useful, cannot be used to invoke a multi-line macro multiple times, because
it is processed by NASM after macros have already been expanded. Therefore NASM provides another form
of loop, this time at the preprocessor level: %rep.

The directives %rep and %endrep (%rep takes a numeric argument, which can be an expression; %endrep
takes no arguments) can be used to enclose a chunk of code, which is then replicated as many times as
specified by the preprocessor:

%assign i 0
%rep 64

40

3.6. INCLUDING OTHER FILES

inc word [table+2*i]
Y%assign 1 i+1
%endrep

This will generate a sequence of 64 INC instructions, incrementing every word of memory from [table] to
[table+126].

For more complex termination conditions, or to break out of a repeat loop part way along, you can use
the %exitrep directive to terminate the loop, like this:

fibonacci:
%assign i 0
%assign j 1
Y%rep 100
%if j > 65535

Y%exitrep
%endif

dw j

Y%assign k j+i
%assign i j
%assign j k
Y%endrep

fib _number equ ($-fibonacci)/2

This produces a list of all the Fibonacci numbers that will fit in 16 bits. Note that a maximum repeat
count must still be given to %rep. This is to prevent the possibility of NASM getting into an infinite loop in
the preprocessor, which (on multitasking or multi-user systems) would typically cause all the system memory
to be gradually used up and other applications to start crashing.

3.6 Including Other Files

Using, once again, a very similar syntax to the C preprocessor, the NASM preprocessor lets you include other
source files into your code. This is done by the use of the %include directive:

%include "macros.mac"

will include the contents of the file macros.mac into the source file containing the %include directive.

Include files are first searched for relative to the directory containing the source file that is performing the
inclusion, and then relative to any directories specified on the Yasm command line using the -I option (see
Pazmen 1.3.3.3), in the order given on the command line (any relative paths on the Yasm command line are
relative to the current working directory, e.g. where Yasm is being run from). While this search strategy does
not match traditional NASM behavior, it does match the behavior of most C compilers and better handles
relative pathnames.

The standard C idiom for preventing a file being included more than once is just as applicable in the
NASM preprocessor: if the file macros.mac has the form

%ifndef MACROS MAC

%define MACROS MAC

; now define some macros
%endif

then including the file more than once will not cause errors, because the second time the file is included
nothing will happen because the macro MACROS MAC will already be defined.

You can force a file to be included even if there is no %include directive that explicitly includes it, by
using the -P option on the Yasm command line (see Paszgen 1.3.3.4).

41

I'JTABA 3. THE NASM PREPROCESSOR

3.7 The Context Stack

Having labels that are local to a macro definition is sometimes not quite powerful enough: sometimes you
want to be able to share labels between several macro calls. An example might be a REPEAT ... UNTIL
loop, in which the expansion of the REPEAT macro would need to be able to refer to a label which the
UNTIL macro had defined. However, for such a macro you would also want to be able to nest these loops.

The NASM preprocessor provides this level of power by means of a context stack. The preprocessor
maintains a stack of contexts, each of which is characterised by a name. You add a new context to the stack
using the %push directive, and remove one using %pop. You can define labels that are local to a particular
context on the stack.

3.7.1 %push and %pop: Creating and Removing Contexts

The %push directive is used to create a new context and place it on the top of the context stack. %push
requires one argument, which is the name of the context. For example:

%push foobar

This pushes a new context called foobar on the stack. You can have several contexts on the stack with
the same name: they can still be distinguished.

The directive %pop, requiring no arguments, removes the top context from the context stack and destroys
it, along with any labels associated with it.

3.7.2 Context-Local Labels

Just as the usage %%foo defines a label which is local to the particular macro call in which it is used, the
usage %$foo is used to define a label which is local to the context on the top of the context stack. So the
REPEAT and UNTIL example given above could be implemented by means of:

Y%macro repeat 0

Y%push repeat
%$begin :

%endmacro
Y%macro until 1

j%-1 %$begin
Y%pop

%endmacro

and invoked by means of, for example,

mov cx,string
repeat

add cx,3
scasb

until e

which would scan every fourth byte of a string in search of the byte in AL.
If you need to define, or access, labels local to the context below the top one on the stack, you can use
%$$foo, or %$$$foo for the context below that, and so on.

3.7.3 Context-Local Single-Line Macros

The NASM preprocessor also allows you to define single-line macros which are local to a particular context,
in just the same way:

42

3.7. THE CONTEXT STACK

%define %$localmac 3

will define the single-line macro %$localmac to be local to the top context on the stack. Of course, after
a subsequent %push, it can then still be accessed by the name %$$localmac.

3.7.4 Y%repl: Renaming a Context

If you need to change the name of the top context on the stack (in order, for example, to have it respond
differently to %ifctx), you can execute a %pop followed by a %push; but this will have the side effect of
destroying all context-local labels and macros associated with the context that was just popped.

The NASM preprocessor provides the directive %repl, which replaces a context with a different name,
without touching the associated macros and labels. So you could replace the destructive code

Y%pop
Y%push newname

with the non-destructive version %repl newname.

3.7.5 Example Use of the Context Stack: Block IFs

This example makes use of almost all the context-stack features, including the conditional-assembly construct
%ifctx, to implement a block IF statement as a set of macros.

Y%macro if 1

%push if
j%-1 %$ifnot

Y%endmacro

Y%macro else 0

%ifctx if
Y%repl else
jmp %$ifend
%$ifnot :
%else
%error "expected ‘if’ before ‘else’"
Y%endif
Y%endmacro

%macro endif 0

Yifctx if
%$ifnot :
Y%pop
Y%elifctx else
%$ifend :
Y%pop
%else
Y%error "expected ‘if’ or ‘else
%endif

> before ‘endif’"

%endmacro

This code is more robust than the REPEAT and UNTIL macros given in Pazmen 3.7.2, because it uses
conditional assembly to check that the macros are issued in the right order (for example, not calling endif
before if) and issues a %error if they’re not.

43

I'JTABA 3. THE NASM PREPROCESSOR

In addition, the endif macro has to be able to cope with the two distinct cases of either directly following an
if, or following an else. It achieves this, again, by using conditional assembly to do different things depending
on whether the context on top of the stack is if or else.

The else macro has to preserve the context on the stack, in order to have the %8$ifnot referred to by the
if macro be the same as the one defined by the endif macro, but has to change the context’s name so that
endif will know there was an intervening else. It does this by the use of %repl.

A sample usage of these macros might look like:

cmp ax , bx
if ae
cmp bx , cx
if ae
mov ax,cx
else
mov ax , bx
endif
else
cmp ax,cx
if ae
mov ax,cx
endif
endif

The block-IF macros handle nesting quite happily, by means of pushing another context, describing the
inner if, on top of the one describing the outer if; thus else and endif always refer to the last unmatched if
or else.

3.8 Standard Macros

Yasm defines a set of standard macros in the NASM preprocessor which are already defined when it starts
to process any source file. If you really need a program to be assembled with no pre-defined macros, you can
use the %clear directive to empty the preprocessor of everything.

Most user-level NASM syntax directives (see ['siaBa 4) are implemented as macros which invoke primitive
directives; these are described in I'masa 4. The rest of the standard macro set is described here.

3.81 YASM MAJOR | etc: Yasm Version

The single-line macros __ YASM MAJOR_, YASM MINOR_ | and YASM_ SUBMINOR
expand to the major, minor, and subminor parts of the version number of Yasm being used. In addition, -
YASM VER expands to a string representation of the Yasm version and ~ YASM VERSION ID
expands to a 32-bit BCD-encoded representation of the Yasm version, with the major version in the most
significant 8 bits, followed by the 8-bit minor version and 8-bit subminor version, and 0 in the least significant
8 bits. For example, under Yasm 0.5.1, YASM MAJOR__ would be defined to be 0, YASM M-
INOR__ would be defined as 5, _ YASM SUBMINOR__ would be defined as 1, _ YASM_ VER
would be defined as "0.5.1", and __YASM VERSION ID would be defined as 000050100h.

In addition, the single line macro ~ YASM BUILD _ expands to the Yasm «build» number, typically
the Subversion changeset number. It should be seen as less significant than the subminor version, and is
generally only useful in discriminating between Yasm nightly snapshots or pre-release (e.g. release candidate)
Yasm versions.

44

3.8. STANDARD MACROS

382 FILE and LINE :File Name and Line Number

Like the C preprocessor, the NASM preprocessor allows the user to find out the file name and line number
containing the current instruction. The macro __ FILE _ expands to a string constant giving the name of
the current input file (which may change through the course of assembly if %include directives are used),
and LINE expands to a numeric constant giving the current line number in the input file.

These macros could be used, for example, to communicate debugging information to a macro, since
invoking ~ LINE _ inside a macro definition (either single-line or multi-line) will return the line number
of the macro call, rather than definition. So to determine where in a piece of code a crash is occurring, for
example, one could write a routine stillhere, which is passed a line number in EAX and outputs something
like «line 155: still heres. You could then write a macro

Y%macro notdeadyet 0

push eax
mov eax, _LINE
call stillhere
pop eax
%endmacro

and then pepper your code with calls to notdeadyet until you find the crash point.

383 _ _YASM OBJFMT_ _ and __OUTPUT_ FORMAT : Output Object Format
Keyword

~_YASM OBJFMT | and its NASM-compatible alias OUTPUT_ FORMAT | expand to the object
format keyword specified on the command line with -f keyword (see Pasnen 1.3.1.2). For example, if yasm is
invoked with -felf, ~YASM OBJFMT expands to elf.

These expansions match the option given on the command line exactly, even when the object formats are
equivalent. For example, -f elf and -f elf32 are equivalent specifiers for the 32-bit ELF format, and -f elf -m
amd64 and -f elf64 are equivalent specifiers for the 64-bit ELF format, but ~ YASM OBJFMT would
expand to elf and elf32 for the first two cases, and elf and elf64 for the second two cases.

3.8.4 STRUC and ENDSTRUC: Declaring Structure Data Types

The NASM preprocessor is sufficiently powerful that data structures can be implemented as a set of macros.
The macros STRUC and ENDSTRUC are used to define a structure data type.

STRUC takes one parameter, which is the name of the data type. This name is defined as a symbol with
the value zero, and also has the suffix _size appended to it and is then defined as an EQU giving the size of
the structure. Once STRUC has been issued, you are defining the structure, and should define fields using
the RESB family of pseudo-instructions, and then invoke ENDSTRUC to finish the definition.

For example, to define a structure called mytype containing a longword, a word, a byte and a string of
bytes, you might code

struc mytype

mt_long: resd 1
mt_word: resw 1
mt_byte: resb 1
mt _str: resb 32
endstruc

The above code defines six symbols: mt_long as 0 (the offset from the beginning of a mytype structure
to the longword field), mt_word as 4, mt_byte as 6, mt_str as 7, mytype_size as 39, and mytype itself as
zZero.

The reason why the structure type name is defined at zero is a side effect of allowing structures to work
with the local label mechanism: if your structure members tend to have the same names in more than one
structure, you can define the above structure like this:

struc mytype
.long: resd 1

45

I'JTABA 3. THE NASM PREPROCESSOR

.word: resw 1

.byte: resb 1

.str: resb 32
endstruc

This defines the offsets to the structure fields as mytype.long, mytype.word, mytype.byte and mytype.str.

Since NASM syntax has no intrinsic structure support, does not support any form of period notation to
refer to the elements of a structure once you have one (except the above local-label notation), so code such as
mov ax,[mystruc.mt_word] is not valid. mt_word is a constant just like any other constant, so the correct
syntax is mov ax,[mystruc+mt_word] or mov ax,[mystruc+mytype.word].

3.8.5 ISTRUC, AT and IEND: Declaring Instances of Structures

Having defined a structure type, the next thing you typically want to do is to declare instances of that
structure in your data segment. The NASM preprocessor provides an easy way to do this in the ISTRUC
mechanism. To declare a structure of type mytype in a program, you code something like this:

mystruc: istruc mytype
at mt long, dd 123456
at mt word, dw 1024
at mt byte, db ’x’
at mt str, db ’'hello, world’, 13, 10, O
iend

The function of the AT macro is to make use of the TIMES prefix to advance the assembly position to the
correct point for the specified structure field, and then to declare the specified data. Therefore the structure
fields must be declared in the same order as they were specified in the structure definition.

If the data to go in a structure field requires more than one source line to specify, the remaining source
lines can easily come after the AT line. For example:

at mt_ str, db 123,134,145,156,167,178,189
db 190,100,0

Depending on personal taste, you can also omit the code part of the AT line completely, and start the
structure field on the next line:

at mt_str
db ’hello, world”’
db 13,10,0

3.8.6 ALIGN and ALIGNB: Data Alignment

The ALIGN and ALIGNB macros provide a convenient way to align code or data on a word, longword,
paragraph or other boundary. The syntax of the ALIGN and ALIGNB macros is

align 4 ; align on 4-byte boundary
align 16 ; align on 16-byte boundary
align 16 ,nop ; equivalent to previous line
align 8,db 0 ; pad with Os rather than NOPs
align 4,resb 1 ; align to 4 in the BSS

alignb 4 ; equivalent to previous line

Both macros require their first argument to be a power of two; they both compute the number of additional
bytes required to bring the length of the current section up to a multiple of that power of two, and output
either NOP fill or apply the TIMES prefix to their second argument to perform the alignment.

If the second argument is not specified, the default for ALIGN is NOP, and the default for ALIGNB is R-
ESB 1. ALIGN treats a NOP argument specially by generating maximal NOP fill instructions (not necessarily
NOP opcodes) for the current BITS setting, whereas ALIGNB takes its second argument literally. Otherwise,
the two macros are equivalent when a second argument is specified. Normally, you can just use ALIGN in

46

3.8. STANDARD MACROS

code and data sections and ALIGNB in BSS sections, and never need the second argument except for special
purposes.

ALIGN and ALIGNB, being simple macros, perform no error checking: they cannot warn you if their first
argument fails to be a power of two, or if their second argument generates more than one byte of code. In
each of these cases they will silently do the wrong thing.

ALIGNB (or ALIGN with a second argument of RESB 1) can be used within structure definitions:

struc mytype2

mt_byte: resb 1
alignb 2
mt_word: resw 1
alignb 4
mt_long: resd 1
mt _str: resb 32
endstruc

This will ensure that the structure members are sensibly aligned relative to the base of the structure.

A final caveat: ALIGNB works relative to the beginning of the section, not the beginning of the address
space in the final executable. Aligning to a 16-byte boundary when the section you’re in is only guaranteed
to be aligned to a 4-byte boundary, for example, is a waste of effort. Again, Yasm does not check that the
section’s alignment characteristics are sensible for the use of ALIGNB. ALIGN is more intelligent and does
adjust the section alignment to be the maximum specified alignment.

47

[1aBa 4

NASM Assembler Directives

NASM, though it attempts to avoid the bureaucracy of assemblers like MASM and TASM, is nevertheless
forced to support a few directives. These are described in this chapter.

NASM’s directives come in two types: user-level directives and primitive directives. Typically, each
directive has a user-level form and a primitive form. In almost all cases, we recommend that users use
the user-level forms of the directives, which are implemented as macros which call the primitive forms.

Primitive directives are enclosed in square brackets; user-level directives are not.

In addition to the universal directives described in this chapter, each object file format can optionally
supply extra directives in order to control particular features of that file format. These format-specific
directives are documented along with the formats that implement them, in Yacrs V.

4.1 Specifying Target Processor Mode

4.1.1 BITS

The BITS directive specifies whether Yasm should generate code designed to run on a processor operating
in 16-bit mode, 32-bit mode, or 64-bit mode. The syntax is BITS 16, BITS 32, or BITS 64.

In most cases, you should not need to use BITS explicitly. The coff, elf32, macho32, and win32 object
formats, which are designed for use in 32-bit operating systems, all cause Yasm to select 32-bit mode by
default. The elf64, macho64, and win64 object formats, which are designed for use in 64-bit operating systems,
both cause Yasm to select 64-bit mode by default. The xdf object format allows you to specify each segment
you define as USE16, USE32, or USE64, and Yasm will set its operating mode accordingly, so the use of the
BITS directive is once again unnecessary.

The most likely reason for using the BITS directive is to write 32-bit or 64-bit code in a flat binary file;
this is because the bin object format defaults to 16-bit mode in anticipation of it being used most frequently
to write DOS .COM programs, DOS .SYS device drivers and boot loader software.

You do not need to specify BITS 32 merely in order to use 32-bit instructions in a 16-bit DOS program;
if you do, the assembler will generate incorrect code because it will be writing code targeted at a 32-bit
platform, to be run on a 16-bit one. However, it is necessary to specify BITS 64 to use 64-bit instructions
and registers; this is done to allow use of those instruction and register names in 32-bit or 16-bit programs,
although such use will generate a warning.

When Yasm is in BITS 16 mode, instructions which use 32-bit data are prefixed with an 0x66 byte,
and those referring to 32-bit addresses have an 0x67 prefix. In BITS 32 mode, the reverse is true: 32-bit
instructions require no prefixes, whereas instructions using 16-bit data need an 0x66 and those working in
16-bit addresses need an 0x67.

When Yasm is in BITS 64 mode, 32-bit instructions usually require no prefixes, and most uses of 64-bit
registers or data size requires a REX prefix. Yasm automatically inserts REX prefixes where necessary. There
are also 8 more general and SSE registers, and 16-bit addressing is no longer supported. The default address
size is 64 bits; 32-bit addressing can be selected with the 0x67 prefix. The default operand size is still 32
bits, however, and the 0x66 prefix selects 16-bit operand size. The REX prefix is used both to select 64-bit
operand size, and to access the new registers. A few instructions have a default 64-bit operand size.

49

I'JTABA 4. NASM ASSEMBLER DIRECTIVES

When the REX prefix is used, the processor does not know how to address the AH, BH, CH or DH (high
8-bit legacy) registers. Instead, it is possible to access the the low 8-bits of the SP, BP SI, and DI registers
as SPL, BPL, SIL, and DIL, respectively; but only when the REX prefix is used.

The BITS directive has an exactly equivalent primitive form, [BITS 16|, [BITS 32|, and [BITS 64]. The
user-level form is a macro which has no function other than to call the primitive form.

4.1.2 USE16, USE32, and USE64

The USE16, USE32, and USE64 directives can be used in place of BITS 16, BITS 32, and BITS 64 respectively
for compatibility with other assemblers.

4.2 DEFAULT: Change the assembler defaults

The DEFAULT directive changes the assembler defaults. Normally, Yasm defaults to a mode where the
programmer is expected to explicitly specify most features directly. However, sometimes this is not desirable
if a certain behavior is very commmonly used.

Currently, the only DEFAULT that is settable is whether or not registerless effective addresses in 64-
bit mode are RIP-relative or not. By default, they are absolute unless overridden with the REL specifier
(see Paznen 2.3). However, if DEFAULT REL is specified, REL is default, unless overridden with the ABS
specifier, a FS or GS segment override is used, or another register is part of the effective address.

The special handling of F'S and GS overrides are due to the fact that these segments are the only segments
which can have non-0 base addresses in 64-bit mode, and thus are generally used as thread pointers or other
special functions. With a non-zero base address, generating RIP-relative addresses for these forms would be
extremely confusing. Other segment registers such as DS always have a base address of 0, so RIP-relative
access still makes sense.

DEFAULT REL is disabled with DEFAULT ABS. The default mode of the assembler at start-up is
DEFAULT ABS.

4.3 Changing and Defining Sections

4.3.1 SECTION and SEGMENT

The SECTION directive (((SEGMENT)) is an exactly equivalent synonym) changes which section of the
output file the code you write will be assembled into. In some object file formats, the number and names of
sections are fixed; in others, the user may make up as many as they wish. Hence SECTION may sometimes
give an error message, or may define a new section, if you try to switch to a section that does not (yet) exist.

4.3.2 Standardized Section Names

The Unix object formats, and the bin object format, all support the standardised section names .text, .data
and .bss for the code, data and uninitialised-data sections. The obj format, by contrast, does not recognise
these section names as being special, and indeed will strip off the leading period of any section name that
has one.

4.3.3 The SECT__ Macro

The SECTION directive is unusual in that its user-level form functions differently from its primitive form. The
primitive form, [SECTION xyz|, simply switches the current target section to the one given. The user-level
form, SECTION xyz, however, first defines the single-line macro _ SECT __ to be the primitive [SECTION]
directive which it is about to issue, and then issues it. So the user-level directive

SECTION . text

expands to the two lines

50

4.4. ABSOLUTE: DEFINING ABSOLUTE LABELS

%define SECT _ [SECTION . text |

[SECTION . text |

Users may find it useful to make use of this in their own macros. For example, the writefile macro defined
in the NASM Manual can be usefully rewritten in the following more sophisticated form:

Y%macro writefile 24
[section .data]
Y%%str: db %2
Y%Fendstr :
SECT

mov dx,%%str

mov cx,%%endstr-%%str
mov bx,%1

mov ah,0x40

int 0x21

Y%endmacro

This form of the macro, once passed a string to output, first switches temporarily to the data section
of the file, using the primitive form of the SECTION directive so as not to modify =~ SECT . It then
declares its string in the data section, and then invokes ~~ SECT to switch back to whichever section the
user was previously working in. It thus avoids the need, in the previous version of the macro, to include a
JMP instruction to jump over the data, and also does not fail if, in a complicated OBJ format module, the
user could potentially be assembling the code in any of several separate code sections.

4.4 ABSOLUTE: Defining Absolute Labels

The ABSOLUTE directive can be thought of as an alternative form of SECTION: it causes the subsequent
code to be directed at no physical section, but at the hypothetical section starting at the given absolute
address. The only instructions you can use in this mode are the RESB family.

ABSOLUTE is used as follows:

ABSOLUTE 0x1A

kbuf chr resw 1
kbuf free resw 1
kbuf resw 16

This example describes a section of the PC BIOS data area, at segment address 0x40: the above code
defines kbuf chr to be 0x1A, kbuf free to be 0x1C, and kbuf to be 0x1E.

The user-level form of ABSOLUTE, like that of SECTION, redefines the =~ SECT _ macro when it is
invoked.

STRUC and ENDSTRUC are defined as macros which use ABSOLUTE (and also SECT).

ABSOLUTE doesn’t have to take an absolute constant as an argument: it can take an expression (actually,
a critical expression: see Pazmes 2.8) and it can be a value in a segment. For example, a TSR can re-use its
setup code as run-time BSS like this:

org 100h ; it ’s a .OOM program
jmp setup ; setup code comes last
; the resident part of the TSR goes here

setup: ; now write the code that installs the TSR here

absolute setup
runtimevarl resw 1
runtimevar2 resd 20
tsr_end:

This defines some variables «on top of» the setup code, so that after the setup has finished running, the
space it took up can be re-used as data storage for the running TSR. The symbol «tsr _end» can be used to
calculate the total size of the part of the TSR that needs to be made resident.

51

I'JTABA 4. NASM ASSEMBLER DIRECTIVES

4.5 EXTERN: Importing Symbols

EXTERN is similar to the MASM directive EXTRN and the C keyword extern: it is used to declare a symbol
which is not defined anywhere in the module being assembled, but is assumed to be defined in some other
module and needs to be referred to by this one. Not every object-file format can support external variables:
the bin format cannot.

The EXTERN directive takes as many arguments as you like. Each argument is the name of a symbol:

extern _ printf
extern _sscanf, _fscanf

Some object-file formats provide extra features to the EXTERN directive. In all cases, the extra features
are used by suffixing a colon to the symbol name followed by object-format specific text. For example, the
obj format allows you to declare that the default segment base of an external should be the group dgroup by
means of the directive

extern _ variable:wrt dgroup

The primitive form of EXTERN differs from the user-level form only in that it can take only one argument
at a time: the support for multiple arguments is implemented at the preprocessor level.

You can declare the same variable as EXTERN more than once: NASM will quietly ignore the second
and later redeclarations. You can’t declare a variable as EXTERN as well as something else, though.

4.6 GLOBAL: Exporting Symbols

GLOBAL is the other end of EXTERN: if one module declares a symbol as EXTERN and refers to it, then in
order to prevent linker errors, some other module must actually define the symbol and declare it as GLOBAL.
Some assemblers use the name PUBLIC for this purpose.
The GLOBAL directive applying to a symbol must appear before the definition of the symbol.
GLOBAL uses the same syntax as EXTERN, except that it must refer to symbols which are defined in
the same module as the GLOBAL directive. For example:

global _main
_main: ; some code
GLOBAL, like EXTERN, allows object formats to define private extensions by means of a colon. The elf
object format, for example, lets you specify whether global data items are functions or data:
global hashlookup:function, hashtable:data

Like EXTERN, the primitive form of GLOBAL differs from the user-level form only in that it can take
only one argument at a time.

4.7 COMMON: Defining Common Data Areas

The COMMON directive is used to declare common variables. A common variable is much like a global
variable declared in the uninitialised data section, so that

common intvar 4

is similar in function to

global intvar
section .bss
intvar resd 1

The difference is that if more than one module defines the same common variable, then at link time those
variables will be merged, and references to intvar in all modules will point at the same piece of memory.

Like GLOBAL and EXTERN, COMMON supports object-format specific extensions. For example, the
obj format allows common variables to be NEAR or FAR, and the elf format allows you to specify the
alignment requirements of a common variable:

52

4.8. CPU: DEFINING CPU DEPENDENCIES

common commvar 4:near ; works in OBJ
common intarray 100:4 ; works in ELF: 4 byte aligned

Once again, like EXTERN and GLOBAL, the primitive form of COMMON differs from the user-level
form only in that it can take only one argument at a time.

4.8 CPU: Defining CPU Dependencies

The CPU directive restricts assembly to those instructions which are available on the specified CPU. See
Yacre VII for CPU options for various architectures.

All options are case insensitive. Instructions will be enabled only if they apply to the selected cpu or
lower.

53

Yacrp [V

GAS Syntax

55

The chapters in this part of the book document the GNU AS-compatible syntax accepted by the Yasm
«gas» parser.

57

[1aBa b

TBD

To be written.

59

Yacrp V

Object Formats

61

The chapters in this part of the book document Yasm’s support for various object file formats.

63

['1aBa 6

bin: Flat-Form Binary Output

The bin «object format» does not produce object files: the output file produced contains only the section
data; no headers or relocations are generated. The output can be considered «plain binary», and is useful
for operating system and boot loader development, generating MS-DOS .COM executables and .SYS device
drivers, and creating images for embedded target environments (e.g. Flash ROM).

The bin object format supports an unlimited number of named sections. See Paznes 6.2 for details. The
only restriction on these sections is that their storage locations in the output file cannot overlap.

When used with the x86 architecture, the bin object format starts Yasm in 16-bit mode. In order to write
native 32-bit or 64-bit code, an explicit BITS 32 or BITS 64 directive is required respectively.

bin produces an output file with no extension by default; it simply strips the extension from the input
file name. Thus the default output filename for the input file foo.asm is simply foo.

6.1 ORG: Binary Origin

bin provides the ORG directive in NASM syntax to allow setting of the memory address at which the output
file is initially loaded. The ORG directive may only be used once (as the output file can only be initially
loaded into a single location). If ORG is not specified, ORG 0 is used by default.

This makes the operation of NASM-syntax ORG very different from the operation of ORG in other
assemblers, which typically simply move the assembly location to the value given. bin provides a more
powerful alternative in the form of extensions to the SECTION directive; see Paznen 6.2 for details.

When combined with multiple sections, ORG also has the effect of defaulting the LMA of the first section
to the ORG value to make the output file as small as possible. If this is not the desired behavior, explicitly
specify a LMA for all sections via either START or FOLLOWS qualifiers in the SECTION directive.

6.2 bin Extensions to the SECTION Directive

The bin object format allows the use of multiple sections of arbitrary names. It also extends the SECTION
(or SEGMENT) directive to allow complex ordering of the segments both in the output file or initial load
address (also known as LMA) and at the ultimate execution address (the virtual address or VMA).

The VMA is the execution address. Yasm calculates absolute memory references within a section assuming
that the program code is at the VMA while being executed. The LMA, on the other hand, specifies where a
section is initially loaded, as well as its location in the output file.

Often, VMA will be the same as LMA. However, they may be different if the program or another piece of
code copies (relocates) a section prior to execution. A typical example of this in an embedded system would
be a piece of code stored in ROM, but is copied to faster RAM prior to execution. Another example would
be overlays: sections loaded on demand from different file locations to the same execution location.

The bin extensions to the SECTION directive allow flexible specification of both VMA and LMA including
alignment constraints. As with other object formats, additional attributes may be added after the section
name. The available attributes are listed in Tab6sma 6.1.

Only one of start or follows may be specified for a section; the same restriction applies to vstart and
vfollows.

65

I'JTABA 6. BIN: FLAT-FORM BINARY OUTPUT

Tabmauna 6.1 bin Section Attributes

Attribute Indicates the section
progbits is stored in the disk image, as opposed to
allocated and initialized at load.
nobits is allocated and initialized at load (the opposite of

progbits). Only one of progbits or nobits may be
specified; they are mutually exclusive attributes.

start=address

has an LMA starting at address. If a LMA
alignment constraint is given, it is checked against
the provided address and a warning is issued if
address does not meet the alignment constraint.

follows=sectname

should follow the section named sectname in the
output file (LMA). If a LMA alignment constraint
is given, it is respected and a gap is inserted such
that the section meets its alignment requirement.
Note that as LMA overlap is not allowed,
typically only one section may follow another.

align=n

requires a LMA alignment of n bytes. The value
n must always be a power of 2. LMA alignment
defaults to 4 if not specified.

vstart=address

has an VMA starting at address. If a VMA
alignment constraint is given, it is checked against
the provided address and a warning is issued if
address does not meet the alignment constraint.

viollows—sectname

should follow the section named sectname in the
output file (VMA). If a VMA alignment
constraint is given, it is respected and a gap is
inserted such that the section meets its alignment
requirement. VMA overlap is allowed, so more
than one section may follow another (possibly
useful in the case of overlays).

valign=n

requires a VMA alignment of n bytes. The value
n must always be a power of 2. VMA alignment
defaults to the LMA alignment if not specified.

66

6.3. BIN SPECIAL SYMBOLS

Unless otherwise specified via the use of follows or start, Yasm by default assumes the implicit ordering
given by the order of the sections in the input file. A section named .text is always the first section. Any code
which comes before an explicit SECTION directive goes into the .text section. The .text section attributes
may be overridden by giving an explicit SECTION .text directive with attributes.

Also, unless otherwise specified, Yasm defaults to setting VMA=LMA. If just «valign® is specified, Yasm
just takes the LMA and aligns it to the required alignment. This may have the effect of pushing following
sections» VMAs to non-LMA addresses as well, to avoid VMA overlap.

Yasm treats nobits sections in a special way in order to minimize the size of the output file. As nobits
sections can be 0-sized in the LMA realm, but cannot be if located between two other sections (due to the
VMA=LMA default), Yasm moves all nobits sections with unspecified LMA to the end of the output file,
where they can savely have 0 LMA size and thus not take up any space in the output file. If this behavior is
not desired, a nobits section LMA (just like a progbits section) may be specified using either the follows or
start section attribute.

6.3 bin Special Symbols

To facilitate writing code that copies itself from one location to another (e.g. from its LMA to its VMA
during execution), the bin object format provides several special symbols for every defined section. Each
special symbol begins with section. followed by the section name. The supported special bin symbols are:

section.sectname.start Set to the LMA address of the section named sectname.
section.sectname.vstart Set to the VMA address of the section named sectname.

section.sectname.length Set to the length of the section named sectname. The length is considered the
runtime length, so «nobits™ sections» length is their runtime length, not 0.

6.4 Map Files

Map files may be generated in bin via the use of the [MAP] directive. The map filename may be specified
either with a command line option (--mapfile=filename) or in the [MAP] directive. If a map is requested but
no output filename is given, the map output goes to standard output by default.

If no [MAP] directive is given in the input file, no map output is generated. If [MAP] is given with
no options, a brief map is generated. The [MAP] directive accepts the following options to control what is
included in the map file. More than one option may be specified. Any option other than the ones below is
interpreted as the output filename.

brief Includes the input and output filenames, origin (ORG value), and a brief section summary listing the
VMA and LMA start and stop addresses and the section length of every section.

sections , segments Includes a detailed list of sections, including the VMA and LMA alignment, any «follows»
settings, as well as the VMA and LMA start addresses and the section length.

symbols Includes a detailed list of all EQU values and VMA and LMA symbol locations, grouped by section.
all All of the above.

67

['taBa 7

cotf: Common Object File Format

69

['1aBa 8

elt32: Executable and Linkable Format 32-bit
Object Files

The Executable and Linkable Object Format is the primary object format for many operating systems
including FreeBSD or GNU /Linux. It appears in three forms:

e Shared object files (.s0)
* Relocatable object files (.0)
* Executable files (no convention)

Yasm only directly supports relocatable object files. Other tools, such as the GNU Linker 1d, help turn
relocatable object files into the other formats. Yasm supports generation of both 32-bit and 64-bit ELF files,
called elf32 and elf64. A generic interface to both is also provided, elf, which selects between elf32 and elf64
based on the target machine architecture (see Pazmen 1.3.1.7).

Yasm defaults to BITS 32 mode when outputting to the elf32 object format.

8.1 Debugging Format Support

ELF supports two debugging formats: stabs (see I'masa 18) and dwarf2 (see ['maBa 17). Different debuggers
understand these different formats; the newer debug format is dwarf2, so try that first.

8.2 ELF Sections

ELF’s section-based output supports attributes on a per-section basis. These attributes include alloc, exec,
write, progbits, and align. Except for align, they can each be negated in NASM syntax by prepending «nos,
e.g., «<noexecy. The attributes are later read by the operating system to select the proper behavior for each
section, with the meanings shown in Ta6smma 8.1.

In NASM syntax, the attribute nobits is provided as an alias for noprogbits.

The standard primary sections have attribute defaults according their expected use, and any unknown
section gets its own defaults, as shown in Tabsmma 8.2.

8.3 ELF Directives
ELF adds additional assembler directives to define weak symbols (WEAK), set symbol size (SIZE), and

indicate whether a symbol is specifically a function or an object (TYPE). ELF also adds a directive to assist
in identifying the source file or version, IDENT.

71

I'JTABA 8. ELF32: EXECUTABLE AND LINKABLE FORMAT 32-BIT OBJECT FILES

Tabmuna 8.1 ELF Section Attributes

Attribute Indicates the section
alloc is loaded into memory at runtime. This is true for
code and data sections, and false for metadata
sections.
exec has permission to be run as executable code.
write is writable at runtime.
progbits is stored in the disk image, as opposed to
allocated and initialized at load.
align=n requires a memory alignment of n bytes. The
value n must always be a power of 2.

Tabumma 8.2 ELF Standard Sections

Section alloc exec write progbits align
.bss alloc write 4
.data alloc write progbits 4
.rodata alloc progbits 4
text alloc exec progbits 16
.comment progbits 0
unknown alloc progbits 1

8.3.1 IDENT: Add file identification

The IDENT directive allows adding arbitrary string data to an ELF object file that will be saved in the
object and executable file, but will not be loaded into memory like data in the .data section. It is often used
for saving version control keyword information from tools such as cvs or svn into files so that the source
revision the object was created with can be read using the ident command found on most Unix systems.

The directive takes one or more string parameters. Each parameter is saved in sequence as a 0-terminated
string in the .comment section of the object file. Multiple uses of the IDENT directive are legal, and the
strings will be saved into the .comment section in the order given in the source file.

In NASM syntax, no wrapper macro is provided for IDENT, so it must be wrapped in square brackets.
Example use in NASM syntax:

[ident "Id"]

8.3.2 SIZE: Set symbol size

ELF’s symbol table has the capability of storing a size for a symbol. This is commonly used for functions or
data objects. While the size can be specificed directly for COMMON symbols, the SIZE directive allows for
specifying the size of any symbol, including local symbols.

The directive takes two parameters; the first parameter is the symbol name, and the second is the size.
The size may be a constant or an expression. Example:

func:
ret
.end:
size func func.end-func

8.3.3 TYPE: Set symbol type

ELF’s symbol table has the capability of indicating whether a symbol is a function or data. While this can
be specified directly in the GLOBAL directive (see Paznen 8.4), the TYPE directive allows specifying the
symbol type for any symbol, including local symbols.

72

8.4. ELF EXTENSIONS TO THE GLOBAL DIRECTIVE

The directive takes two parameters; the first parameter is the symbol name, and the second is the symbol
type. The symbol type must be either function or object. An unrecognized type will cause a warning to be
generated. Example of use:

func:
ret
type func function
section .data
var dd 4
type var object

8.3.4 WEAK: Create weak symbol

ELF allows defining certain symbols as «weak». Weak symbols are similar to global symbols, except during
linking, weak symbols are only chosen after global and local symbols during symbol resolution. Unlike global
symbols, multiple object files may declare the same weak symbol, and references to a symbol get resolved
against a weak symbol only if no global or local symbols have the same name.

This functionality is primarily useful for libraries that want to provide common functions but not come into
conflict with user programs. For example, libc has a syscall (function) called «read». However, to implement
a threaded process using POSIX threads in user-space, libpthread needs to supply a function also called
«read» that provides a blocking interface to the programmer, but actually does non-blocking calls to the
kernel. To allow an application to be linked to both libc and libpthread (to share common code), libc needs
to have its version of the syscall with a non-weak name like « sys read» with a weak symbol called «read».
If an application is linked against libc only, the linker won’t find a non-weak symbol for «read», so it will use
the weak one. If the same application is linked against libc and libpthread, then the linker will link «read»
calls to the symbol in libpthread, ignoring the weak one in libc, regardless of library link order. If libc used
a non-weak name, which «read» function the program ended up with might depend on a variety of factors;
a weak symbol is a way to tell the linker that a symbol is less important resolution-wise.

The WEAK directive takes a single parameter, the symbol name to declare weak. Example:

weakfunc :
strongfunc:

ret
weak weakfunc
global strongfunc

8.4 ELF Extensions to the GLOBAL Directive

ELF object files can contain more information about a global symbol than just its address: they can contain
the size of the symbol and its type as well. These are not merely debugger conveniences, but are actually
necessary when the program being written is a ((shared library)). Yasm therefore supports some extensions
to the NASM syntax GLOBAL directive (see Paznen 4.6), allowing you to specify these features. Yasm also
provides the ELF-specific directives in Paznen 8.3 to allow specifying this information for non-global symbols.

You can specify whether a global variable is a function or a data object by suffixing the name with a
colon and the word function or data. (((object)) is a synonym for data.) For example:

global hashlookup: function , hashtable:data

exports the global symbol hashlookup as a function and hashtable as a data object.

Optionally, you can control the ELF visibility of the symbol. Just add one of the visibility keywords:
default, internal, hidden, or protected. The default is default, of course. For example, to make hashlookup
hidden:

global hashlookup: function hidden

You can also specify the size of the data associated with the symbol, as a numeric expression (which may
involve labels, and even forward references) after the type specifier. Like this:

73

I'JTABA 8. ELF32: EXECUTABLE AND LINKABLE FORMAT 32-BIT OBJECT FILES

global hashtable:data (hashtable.end - hashtable)

hashtable:
db this ,that ,theother ; some data here
.end:

This makes Yasm automatically calculate the length of the table and place that information into the ELF
symbol table. The same information can be given more verbosely using the TYPE (see Pasmen 8.3.3) and
SIZE (see Pazmen 8.3.2) directives as follows:

global hashtable
type hashtable object
size hashtable hashtable.end - hashtable

hashtable:
db this ,that ,theother ; some data here
.end:

Declaring the type and size of global symbols is necessary when writing shared library code.

8.5 ELF Extensions to the COMMON Directive

ELF also allows you to specify alignment requirements on common variables. This is done by putting a
number (which must be a power of two) after the name and size of the common variable, separated (as usual)
by a colon. For example, an array of doublewords would benefit from 4-byte alignment:

common dwordarray 128:4

This declares the total size of the array to be 128 bytes, and requires that it be aligned on a 4-byte
boundary.

8.6 elf32 Special Symbols and WRT

The ELF specification contains enough features to allow position-independent code (PIC) to be written,
which makes ELF shared libraries very flexible. However, it also means Yasm has to be able to generate a
variety of strange relocation types in ELF object files, if it is to be an assembler which can write PIC.

Since ELF does not support segment-base references, the WRT operator is not used for its normal purpose;
therefore Yasm’s elf32 output format makes use of WRT for a different purpose, namely the PIC-specific
relocation types.

elf32 defines five special symbols which you can use as the right-hand side of the WR'T operator to obtain
PIC relocation types. They are ..gotpc, ..gotoff, ..got, ..plt and ..sym. Their functions are summarized here:

..gotpc Referring to the symbol marking the global offset table base using wrt ..gotpc will end up giving
the distance from the beginning of the current section to the global offset table. (((_ GLOBAL _OFF-
SET TABLE)) is the standard symbol name used to refer to the GOT.) So you would then need to
add $$ to the result to get the real address of the GOT.

..gotoff Referring to a location in one of your own sections using wrt ..gotoff will give the distance from
the beginning of the GOT to the specified location, so that adding on the address of the GOT would
give the real address of the location you wanted.

..got Referring to an external or global symbol using wrt ..got causes the linker to build an entry in the
GOT containing the address of the symbol, and the reference gives the distance from the beginning of
the GOT to the entry; so you can add on the address of the GOT, load from the resulting address, and
end up with the address of the symbol.

74

8.6. ELF32 SPECIAL SYMBOLS AND WRT

..plt Referring to a procedure name using wrt ..plt causes the linker to build a procedure linkage table
entry for the symbol, and the reference gives the address of the PLT entry. You can only use this in
contexts which would generate a PC-relative relocation normally (i.e. as the destination for CALL or
JMP), since ELF contains no relocation type to refer to PLT entries absolutely.

..sym Referring to a symbol name using wrt ..sym causes Yasm to write an ordinary relocation, but instead
of making the relocation relative to the start of the section and then adding on the offset to the symbol,
it will write a relocation record aimed directly at the symbol in question. The distinction is a necessary
one due to a peculiarity of the dynamic linker.

75

['1aBa 9

elt64: Executable and Linkable Format 64-bit
Object Files

The elf64 object format is the 64-bit version of the Executable and Linkable Object Format. As it shares
many similarities with elf32, only differences between elf32 and elf64 will be described in this chapter. For
details on elf32, see I'1aBa 8.

Yasm defaults to BITS 64 mode when outputting to the elf64 object format.

elf64 supports the same debug formats as elf32, however, the stabs debug format is limited to 32-bit
addresses, so dwarf2 (see ['masa 17) is the recommended debugging format.

elf64 also supports the exact same sections, section attributes, and directives as elf32. See Pazmen 8.2 for
more details on section attributes, and Paszmen 8.3 for details on the additional directives ELF provides.

9.1 elf64 Special Symbols and WR'T

The primary difference between elf32 and elf64 (other than 64-bit support in general) is the differences in
shared library handling and position-independent code. As BITS 64 enables the use of RIP-relative addressing,
most variable accesses can be relative to RIP, allowing easy relocation of the shared library to a different
memory address.

While RIP-relative addressing is available, it does not handle all possible variable access modes, so special
symbols are still required, as in elf32. And as with elf32, the elf64 output format makes use of WRT for
utilizing the PIC-specific relocation types.

elf64 defines four special symbols which you can use as the right-hand side of the WRT operator to obtain
PIC relocation types. They are ..gotpcrel, ..got, ..plt and ..sym. Their functions are summarized here:

..gotpcrel While RIP-relative addressing allows you to encode an instruction pointer relative data reference
to foo with [rel fool, it’s sometimes necessary to encode a RIP-relative reference to a linker-generated
symbol pointer for symbol foo; this is done using wrt ..gotpcrel, e.g. [rel foo wrt ..gotpcrel]. Unlike in
elf32, this relocation, combined with RIP-relative addressing, makes it possible to load an address from
the ((global offset table)) using a single instruction. Note that since RIP-relative references are limited
to a signed 32-bit displacement, the GOT size accessible through this method is limited to 2 GB.

..got As in elf32, referring to an external or global symbol using wrt ..got causes the linker to build an
entry in the GOT containing the address of the symbol, and the reference gives the distance from the
beginning of the GOT to the entry; so you can add on the address of the GOT, load from the resulting
address, and end up with the address of the symbol.

..plt As in elf32; referring to a procedure name using wrt ..plt causes the linker to build a procedure linkage
table entry for the symbol, and the reference gives the address of the PLT entry. You can only use this
in contexts which would generate a PC-relative relocation normally (i.e. as the destination for CALL
or JMP), since ELF contains no relocation type to refer to PLT entries absolutely.

7

I'JTABA 9. ELF64: EXECUTABLE AND LINKABLE FORMAT 64-BIT OBJECT FILES

..sym As in elf32, referring to a symbol name using wrt ..sym causes Yasm to write an ordinary relocation,
but instead of making the relocation relative to the start of the section and then adding on the offset to
the symbol, it will write a relocation record aimed directly at the symbol in question. The distinction
is a necessary one due to a peculiarity of the dynamic linker.

78

['taBa 10

macho32: Mach 32-bit Object File Format

79

[1aBa 11

macho64: Mach 64-bit Object File Format

81

[1aBa 12

rdf: Relocatable Dynamic Object File Format

83

[1aBa 13

win3d2: Microsott Win32 Object Files

The win32 object format generates Microsoft Win32 object files for use on the 32-bit native Windows XP
(and Vista) platforms. Object files produced using this object format may be linked with 32-bit Microsoft
linkers such as Visual Studio in order to produce 32-bit PE executables.

85

[1aBa 14

win64: PE32+ (Microsoft Win64) Object Files

The win64 or x64 object format generates Microsoft Win64 object files for use on the 64-bit native Windows
XP x64 (and Vista x64) platforms. Object files produced using this object format may be linked with 64-bit
Microsoft linkers such as that in Visual Studio 2005 and 2008 in order to produce 64-bit PE32+ executables.

win64 provides a default output filename extension of .obj.

14.1 win64 Extensions to the SECTION Directive

Like the win32 format, win64 allows you to specify additional information on the SECTION directive line,
to control the type and properties of sections you declare.

14.2 win64 Structured Exception Handling

Most functions that make use of the stack in 64-bit versions of Windows must support exception handling
even if they make no internal use of such facilities. This is because these operating systems locate exception
handlers by using a process called «stack unwinding» that depends on functions providing data that describes
how they use the stack.

When an exception occurs the stack is «unwound» by working backwards through the chain of function
calls prior to the exception event to determine whether functions have appropriate exception handlers or
whether they have saved non-volatile registers whose value needs to be restored in order to reconstruct the
execution context of the next higher function in the chain. This process depends on compilers and assemblers
providing «unwind datas for functions.

The following sections give details of the mechanisms that are available in Yasm to meet these needs and
thereby allow functions written in assembler to comply with the coding conventions used in 64-bit versions
of Windows. These Yasm facilities follow those provided in MASM.

14.2.1 x64 Stack, Register and Function Parameter Conventions

Pucymnok 14.1 shows how the stack is typically used in function calls. When a function is called, an 8 byte
return address is automatically pushed onto the stack and the function then saves any non-volatile registers
that it will use. Additional space can also be allocated for local variables and a frame pointer register can be
assigned if needed.

87

I'JIABA 14. WIN64: PE32+ (MICROSOFT WIN64) OBJECT FILES

Puc. 14.1 x64 Calling Convention

Function A

R9 data
R8 data

RDX data 16 byte aligned
RCX data stack pointer

Return Address

stack pointer
after call

frame pointer

integer
parameters
RO data |4th
| R8data |3rd
RDX data |2nd
| RCX data | 1st

Return Address

_FueionC T

16 byte aligned
stack pointer

The first four integer function parameters are passed (in left to right order) in the registers RCX, RDX, R8
and R9. Further integer parameters are passed on the stack by pushing them in right to left order (parameters
to the left at lower addresses). Stack space is allocated for the four register parameters («shadow space») but
their values are not stored by the calling function so the called function must do this if necessary. The called
function effectively owns this space and can use it for any purpose, so the calling function cannot rely on its
contents on return. Register parameters occupy the least significant ends of registers and shadow space must
be allocated for four register parameters even if the called function doesn’t have this many parameters.

The first four floating point parameters are passed in XMMO0 to XMM3. When integer and floating point
parameters are mixed, the correspondence between parameters and registers is not changed. Hence an integer
parameter after two floating point ones will be in R8 with RCX and RDX unused.

When they are passed by value, structures and unions whose sizes are 8, 16, 32 or 64 bits are passed as if
they are integers of the same size. Arrays and larger structures and unions are passed as pointers to memory
allocated and assigned by the calling function.

The registers RAX, RCX, RDX, R8, R9, R10, R11 are volatile and can be freely used by a called function
without preserving their values (note, however, that some may be used to pass parameters). In consequence
functions cannot expect these registers to be preserved across calls to other functions.

The registers RBX, RBP, RSI, RDI, R12, R13, R14, R15, and XMM6 to XMM15 are non-volatile and
must be saved and restored by functions that use them.

Except for floating point values, which are returned in XMMO, function return values that fit in 64 bits
are returned in RAX. Some 128-bit values are also passed in XMMO but larger values are returned in memory

88

14.2. WIN64 STRUCTURED EXCEPTION HANDLING

assigned by the calling program and pointed to by an additional «<hidden» function parameter that becomes
the first parameter and pushes other parameters to the right. This pointer value must also be passed back
to the calling program in RAX when the called program returns.

14.2.2 Types of Functions

Functions that allocate stack space, call other functions, save non-volatile registers or use exception handling
are called «frame functions»; other functions are called «leaf functions».

Frame functions use an area on the stack called a «stack frame» and have a defined prologue in which this
is set up. Typically they save register parameters in their shadow locations (if needed), save any non-volatile
registers that they use, allocate stack space for local variables, and establish a register as a stack frame
pointer. They must also have one or more defined epilogues that free any allocated stack space and restore
non-volatile registers before returning to the calling function.

Unless stack space is allocated dynamically, a frame function must maintain the 16 byte alignment of the
stack pointer whilst outside its prologue and epilogue code (except during calls to other functions). A frame
function that dynamically allocates stack space must first allocate any fixed stack space that it needs and
then allocate and set up a register for indexed access to this area. The lower base address of this area must
be 16 byte aligned and the register must be provided irrespective of whether the function itself makes explicit
use of it. The function is then free to leave the stack unaligned during execution although it must re-establish
the 16 byte alignment if or when it calls other functions.

Leaf functions do not require defined prologues or epilogues but they must not call other functions; nor
can they change any non-volatile register or the stack pointer (which means that they do not maintain 16
byte stack alignment during execution). They can, however, exit with a jump to the entry point of another
frame or leaf function provided that the respective stacked parameters are compatible.

These rules are summarized in Tabauna 14.1 (function code that is not part of a prologue or an epilogue
are referred to in the table as the function’s body).

Tabsmmna 14.1 Function Structured Exception Handling Rules

Function needs or can: Frame Function with Frame Function Leaf Function

Frame Pointer Register | without Frame Pointer

Register

prologue and yes yes no
epilogue(s)
use exception handling yes yes no
allocate space on the yes yes no
stack
save or push registers yes yes no
onto the stack
use non-volatile yes yes no
registers (after saving)
use dynamic stack yes no no
allocation
change stack pointer in yes | no no
function body
unaligned stack pointer yes ! no yes
in function body
make calls to other yes yes no
functions
make jumps to other no no yes 2
functions

I but 16 byte stack alignment must be re-established when any functions are called.
2 but the function parameters in registers and on the stack must be compatible.

89

I'JIABA 14. WIN64: PE32+ (MICROSOFT WIN64) OBJECT FILES

14.2.3 Frame Function Structure

As already indicated, frame functions must have a well defined structure including a prologue and one or
more epilogues, each of a specific form. The code in a function that is not part of its prologue or its one or
more epilogues will be referred to here as the function’s body.

A typical function prologue has the form:

mov [rsp+8],rcx ; store parameter in shadow space if necessary
push rl4 ; save any non-volatile registers to be used
push rl3 ;

sub rsp,size ; allocate stack for local variables if needed
lea r13 ,[bias+rsp| ; use rl3 as a frame pointer with an offset

When a frame pointer is needed the programmer can choose which register is used («bias» will be explained
later). Although it does not have to be used for access to the allocated space, it must be assigned in the
prologue and remain unchanged during the execution of the body of the function.

If a large amount of stack space is used it is also necessary to call _ chkstk with size in RAX prior to
allocating this stack space in order to add memory pages to the stack if needed (see the Microsoft Visual
Studio 2005 documentation for further details).

The matching form of the epilogue is:

lea rsp ,[r13-bias] ; this is not part of the official epilogue
add rsp,size ; the official epilogue starts here

pop rl3

pop rl4

ret

The following can also be used provided that a frame pointer register has been established:

lea rsp ,[rl3+size - bias|
pop rl3

pop rl4

ret

These are the only two forms of epilogue allowed. It must start either with an add rsp,const instruction
or with lea rsp,[const+fp register]; the first form can be used either with or without a frame pointer register
but the second form requires one. These instructions are then followed by zero or more 8 byte register pops
and a return instruction (which can be replaced with a limited set of jump instructions as described in
Microsoft documentation). Epilogue forms are highly restricted because this allows the exception dispatch
code to locate them without the need for unwind data in addition to that provided for the prologue.

The data on the location and length of each function prologue, on any fixed stack allocation and on any
saved non-volatile registers is recorded in special sections in the object code. Yasm provides macros to create
this data that will now be described (with examples of the way they are used).

14.2.4 Stack Frame Details

There are two types of stack frame that need to be considered in creating unwind data.

The first, shown at left in Pucymnok 14.2, involves only a fixed allocation of space on the stack and results
in a stack pointer that remains fixed in value within the function’s body except during calls to other functions.
In this type of stack frame the stack pointer value at the end of the prologue is used as the base for the offsets
in the unwind primitives and macros described later. It must be 16 byte aligned at this point.

90

14.2. WIN64 STRUCTURED EXCEPTION HANDLING

Puc. 14.2 x64 Detailed Stack Frame

| | | |
Return Address Return Address \

16 byte aligned 16 byte aligned
stack pointer stack pointer
Frame
register
vaue
Base for Base for

Return Address unwind offsets unwind offsets
B }
16 byte "
i Return Address
aigned 16 byte
aigned

In the second type of frame, shown in Pucynok 14.2; stack space is dynamically allocated with the result
that the stack pointer value is statically unpredictable and cannot be used as a base for unwind offsets. In
this situation a frame pointer register must be used to provide this base address. Here the base for unwind
offsets is the lower end of the fixed allocation area on the stack, which is typically the value of the stack
pointer when the frame register is assigned. It must be 16 byte aligned and must be assigned before any
unwind macros with offsets are used.

In order to allow the maximum amount of data to be accessed with single byte offsets (-128 to \+127)
from the frame pointer register, it is normal to offset its value towards the centre of the allocated area (the
«bias» introduced earlier). The identity of the frame pointer register and this offset, which must be a multiple
of 16 bytes, is recorded in the unwind data to allow the stack frame base address to be calculated from the
value in the frame register.

14.2.5 Yasm Primitives for Unwind Operations

Here are the low level facilities Yasm provides to create unwind data.

proc_frame name Generates a function table entry in .pdata and unwind information in .xdata for a
function’s structured exception handling data.

[pushreg reg] Generates unwind data for the specified non-volatile register. Use only for non-volatile integer
registers; for volatile registers use an [allocstack 8| instead.

[setframe reg, offset] Generates unwind data for a frame register and its stack offset. The offset must be a
multiple of 16 and be less than or equal to 240.

[allocstack size] Generates unwind data for stack space. The size must be a multiple of 8.

[savereg reg, offset| Generates unwind data for the specified register and offset; the offset must be positive
multiple of 8 relative to the base of the procedure’s frame.

[savexmm128 reg, offset] Generates unwind data for the specified XMM register and offset; the offset must
be positive multiple of 16 relative to the base of the procedure’s frame.

[pushframe code] Generates unwind data for a 40 or 48 byte (with an optional error code) frame used to
store the result of a hardware exception or interrupt.

91

I'JIABA 14. WIN64: PE32+ (MICROSOFT WIN64) OBJECT FILES

[endprolog] Signals the end of the prologue; must be in the first 255 bytes of the function.
endproc frame Used at the end of functions started with proc_frame.

IMpumep 14.1 shows how these primitives are used (this is based on an example provided in Microsoft
Visual Studio 2005 documentation).

Example 14.1 Win64 Unwind Primitives

PROC_FRAME sample
db 0x48 ; emit a REX prefix to enable hot-patching
push rbp ; save prospective frame pointer
[pushreg rbp | ; create unwind data for this rbp register push
sub rsp ,0x40 ; allocate stack space
[allocstack 0x40] ; create unwind data for this stack allocation
lea rbp,[rsp+0x20] ; assign the frame pointer with a bias of 32
[setframe rbp,0x20 | ; create unwind data for a frame register in rbp
movdqga [rbp] ,xmm7 ; save a non-volatile XMM register
[savexmm128 xmm?7, 0x20] ; create unwind data for an XMM register save
mov [rbp+0x18],rsi ; save rsi
[savereg rsi,0x38] ; create unwind data for a save of rsi
mov [rsp+0x10],rdi ; save rdi
[savereg rdi, 0x10] ; create unwind data for a save of rdi
[endprolog]

; We can change the stack pointer outside of the prologue because we
; have a frame pointer. If we didn’t have one this would be illegal.
; A frame pointer is needed because of this stack pointer modification.

sub rsp ,0x60 ; we are free to modify the stack pointer
mov rax,0 ; we can unwind this access violation

mov rax ,[rax|

movdqa xmm7, [rbp | ; restore the registers that weren’t saved
mov rsi,[rbp+0x18] ; with a push; this is not part of the
mov rdi,[rbp-0x10] ; official epilog

lea rsp ,[rbp-0x20] ; This is the official epilog

pop rbp

ret

ENDPROC_FRAME

14.2.6 Yasm Macros for Formal Stack Operations

From the descriptions of the YASM primitives given earlier it can be seen that there is a close relationship
between each normal stack operation and the related primitive needed to generate its unwind data. In
consequence it is sensible to provide a set of macros that perform both operations in a single macro call.
Yasm provides the following macros that combine the two operations.

proc_ frame name Generates a function table entry in .pdata and unwind information in .xdata.
alloc_stack n Allocates a stack area of n bytes.

save_reg reg, loc Saves a non-volatile register reg at offset loc on the stack.

push reg reg Pushes a non-volatile register reg on the stack.

rex push reg reg Pushes a non-volatile register reg on the stack using a 2 byte push instruction.

save _xmml28 reg, loc Saves a non-volatile XMM register reg at offset loc on the stack.

92

14.2. WIN64 STRUCTURED EXCEPTION HANDLING

set_frame reg, loc Sets the frame register reg to offset loc on the stack.

push eflags Pushes the eflags register

push rex eflags Pushes the eflags register using a 2 byte push instruction (allows hot patching).

push _frame code Pushes a 40 byte frame and an optional 8 byte error code onto the stack.

end prologue , end prolog Ends the function prologue (this is an alternative to [endprolog]).

endproc_frame Used at the end of funtions started with proc_frame.

ITpumep 14.2 is [Ipumep 14.1 using these higher level macros.

Example 14.2 Win64 Unwind Macros

PROC_FRAME
rex push reg
alloc _stack

set frame
save xmm1l28
space

save reg

save reg
END PROLOGUE

sub

mov

mov

movdqa

mov

mov

lea

pop

ret

ENDPROC_FRAME

sample
rbp

0x40

rbp, 0x20
xmm?7,0x20
rsi, 0x38
rdi, 0x10
rsp ,0x60
rax ,0

rax ,[rax|

xmm7, [rbp |
rsi ,[rbp+0x18]|
rdi,[rbp-0x10]

rsp , [rbp-0x20]
rbp

)

)

start the prologue

push the prospective frame pointer

allocate 64 bytes of local stack space

set a frame register to [rsp+32]

save xmm7, rsi & rdi to the local stack <

unwind base address: [rsp after entry - 72|
frame register value: [rsp after entry - 40]

we can now change the stack pointer

and unwind this access violation

because we have a frame pointer

restore the registers that weren’t saved with

a push (not a part of the official epilog)

the official epilogue

93

[1aBa 15

xdf: Extended Dynamic Object Format

95

Yacrp VI

Debugging Formats

97

The chapters in this part of the book document Yasm’s support for various debugging formats.

99

['naBa 16

cv8: CodeView Debugging Format for VCS8

101

[maBa 17

dwart2: DWARF2 Debugging Format

103

[1aBa 18

stabs: Stabs Debugging Format

105

Yacro VII

Architectures

107

The chapters in this part of the book document Yasm’s support for various instruction set architectures.

109

['nasa 19

x&86 Architecture

The x86 architecture is the generic name for a multi-vendor 16-bit, 32-bit, and most recently 64-bit architecture.
It was originally developed by Intel in the 8086 series of CPU, extended to 32-bit by Intel in the 80386 CPU,
and extended by AMD to 64 bits in the Opteron and Athlon 64 CPU lines. While as of 2007, Intel and
AMD are the highest volume manufacturers of x86 CPUs, many other vendors have also manufactured x86
CPUs. Generally the manufacturers have cross-licensed (or copied) major improvements to the architecture,
but there are some unique features present in many of the implementations.

19.1 Instructions

The x86 architecture has a variable instruction size that allows for moderate code compression while also
allowing for very complex operand combinations as well as a very large instruction set size with many
extensions. Instructions generally vary from zero to three operands with only a single memory operand
allowed.

19.1.1 NOP Padding

Different processors have different recommendations for the NOP (no operation) instructions used for padding
in code. Padding is commonly performed to align loop boundaries to maximize performance, and it is key
that the padding itself add minimal overhead. While the one-byte NOP 90h is standard across all x86
implementations, more recent generations of processors recommend different variations for longer padding
sequences for optimal performance. Most processors that claim a 686 (e.g. Pentium Pro) generation or newer
featureset support the «long»> NOP opcode OFh 1Fh, although this opcode was undocumented until recently.
Older processors that do not support these dedicated long NOP opcodes generally recommended alternative
longer NOP sequences; while these sequences work as NOPs, they can cause decoding inefficiencies on newer
Processors.

Because of the various NOP recommendations, the code generated by the Yasm ALIGN directive depends
on both the execution mode (BITS) setting and the processor selected by the CPU directive (see Pas-
nen 19.2.1). Tabauna 19.1 lists the various combinations of generated NOPs.

In addition, the above defaults may be overridden by passing one of the options in Ta6smuma 19.2 to the
CPU directive.

19.2 Execution Modes and Extensions

The x86 has been extended in many ways throughout its history, remaining mostly backwards compatible
while adding execution modes and large extensions to the instruction set. A modern x86 processor can operate
in one of four major modes: 16-bit real mode, 16-bit protected mode, 32-bit protected mode, and 64-bit long
mode. The primary difference between real and protected mode is in the handling of segments: in real mode
the segments directly address memory as 16-byte pages, whereas in protected mode the segments are instead
indexes into a descriptor table that contains the physical base and size of the segment. 32-bit protected mode
allows paging and virtual memory as well as a 32-bit rather than a 16-bit offset.

111

I'JIABA 19. X86 ARCHITECTURE

Tabmauma 19.1 x86 NOP Padding Modes

BITS CPU Padding

16 Any 16-bit short NOPs

32 None given, or less than 686 32-bit short NOPs (no long
NOPs)

32 686 or newer Intel processor Intel guidelines, using long
NOPs

32 K6 or newer AMD processor AMD K10 guidelines, using
long NOPs

64 None Intel guidelines, using long
NOPs

64 686 or newer Intel processor Intel guidelines, using long
NOPs

64 K6 or newer AMD processor AMD K10 guidelines, using
long NOPs

Tab6smma 19.2 x86 NOP CPU Directive Options

Name Description
basi Long NOPs not used
asicnop
1 Intel guidelines, using long NOPs
intelnop
AMD K10 guidelines, using long NOPs
amdnop

The 16-bit and 32-bit operating modes both allow for use of both 16-bit and 32-bit registers via instruction
prefixes that set the operation and address size to either 16-bit or 32-bit, with the active operating mode
setting the default operation size and the «other» size being flagged with a prefix. These operation and
address sizes also affect the size of immediate operands: for example, an instruction with a 32-bit operation
size with an immediate operand will have a 32-bit value in the encoded instruction, excepting optimizations
such as sign-extended 8-bit values.

Unlike the 16-bit and 32-bit modes, 64-bit long mode is more of a break from the «legacy» modes. Long
mode obsoletes several instructions. It is also the only mode in which 64-bit registers are available; 64-bit
registers cannot be accessed from either 16-bit or 32-bit mode. Also, unlike the other modes, most encoded
values in long mode are limited to 32 bits in size. A small subset of the MOV instructions allow 64 bit encoded
values, but values greater than 32 bits in other instructions must come from a register. Partly due to this
limitation, but also due to the wide use of relocatable shared libraries, long mode also adds a new addressing
mode: RIP-relative.

19.2.1 CPU Options

The NASM parser allows setting what subsets of instructions and operands are accepted by Yasm via use
of the CPU directive (see Pasmen 4.8). As the x86 architecture has a very large number of extensions, both
specific feature flags such as «SSE3» and CPU names such as «P4» can be specified. The feature flags have
both normal and «no»-prefixed versions to turn on and off a single feature, while the CPU names turn on
only the features listed, turning off all other features. Tabmmma 19.3 lists the feature flags, and Tabmuma 19.4
lists the CPU names Yasm supports. Having both feature flags and CPU names allows for combinations such
as CPU P3 nofpu. Both feature flags and CPU names are case insensitive.

In order to have access to 64-bit instructions, both a 64-bit capable CPU must be selected, and 64-bit
assembly mode must be set (in NASM syntax) by either using BITS 64 (see Pazgen 4.1) or targetting a
64-bit object format such as elf64.

The default CPU setting is for the latest processor and all feature flags to be enabled; e.g. all x86
instructions for any processor, including all instruction set extensions and 64-bit instructions.

112

19.2. EXECUTION MODES AND EXTENSIONS

Tabauna 19.3 x86 CPU Feature Flags

Name Description

FPU Floating Point Unit (FPU) instructions

MMX MMX SIMD instructions

SSE Streaming SIMD Extensions (SSE) instructions

SSE2 Streaming SIMD Extensions 2 instructions

SSE3 Streaming SIMD Extensions 3 instructions

SSSE3 Supplemental Streaming SIMD Extensions 3
instructions

SSE4.1 Streaming SIMD Extensions 4, Penryn subset (47
instructions)

SSE4.2 Streaming SIMD Extensions 4, Nehalem subset
(7 instructions)

SSE4 All Streaming SIMD Extensions 4 instructions
(both SSE4.1 and SSEA4.2)

SSE4a Streaming SIMD Extensions 4a (AMD)

SSESH Streaming SIMD Extensions 5

XSAVE XSAVE instructions

AVX Advanced Vector Extensions instructions

FMA Fused Multiply-Add instructions

AES Advanced Encryption Standard instructions

CLMUL, PCLMULQDQ PCLMULQDQ instruction

3DNow 3DNow! instructions

Cyrix Cyrix-specific instructions

AMD AMD-specific instructions (older than K6)

SMM System Management Mode instructions

Prot, Protected Protected mode only instructions

Undoc, Undocumented Undocumented instructions

Obs, Obsolete Obsolete instructions

Priv, Privileged Privileged instructions

SVM Secure Virtual Machine instructions

PadLock VIA PadLock instructions

EM64T Intel EM64T or better instructions (not
necessarily 64-bit only)

113

I'JIABA 19. X86 ARCHITECTURE

Tabsmma 19.4 x86 CPU Names

Name Feature Flags Description
8086 Priv Intel 8086

186, 80186, 1186 Priv Intel 80186
286, 80286, 1286 Priv Intel 80286

386, 30386, 1386

SMM, Prot, Priv

Intel 80386

486, 80486, 1486

FPU, SMM, Prot, Priv

Intel 80486

586, 1586, Pentium, P5

FPU, SMM, Prot, Priv

Intel Pentium

686, 1686, P6, PPro,
PentiumPro

FPU, SMM, Prot, Priv

Intel Pentium Pro

P2, Pentium2, Pentium-2,
Pentiumll, Pentium-II

MMX, FPU, SMM, Prot, Priv

Intel Pentium II

P3, Pentium3, Pentium-3,
PentiumlIII, Pentium-III,
Katmai

SSE, MMX, FPU, SMM, Prot,

Priv

Intel Pentium III

P4, Pentium4, Pentium-4,
PentiumlV, Pentium-1V,
Williamette

SSE2, SSE, MMX, FPU, SMM,
Prot, Priv

Intel Pentium 4

[A64, TA-64, Ttanium

SSE2, SSE, MMX, FPU, SMM,
Prot, Priv

Intel Itanium (x86)

SMM, Prot, Priv

K6 3DNow, MMX, FPU, SMM, AMD K6
Prot, Priv
Athlon, K7 SSE, 3DNow, MMX, FPU, AMD Athlon

Hammer, Clawhammer,
Opteron, Athlon64, Athlon-64

SSE2, SSE, 3DNow, MMX,
FPU, SMM, Prot, Priv

AMD Athlon64 and Opteron

Prescott

SSE3, SSE2, SSE MMX, FPU,
SMM, Prot, Priv

Intel codename Prescott

Conroe, Core2

SSSE3, SSE3, SSE2, SSE,
MMZX, FPU, SMM, Prot, Priv

Intel codename Conroe

Penryn

SSE4.1, SSSE3, SSE3, SSE2,
SSE, MMX, FPU, SMM, Prot,
Priv

Intel codename Penryn

Nehalem, Corei7

XSAVE, SSE4.2, SSE4.1,
SSSE3, SSE3, SSE2, SSE,
MMZX, FPU, SMM, Prot, Priv

Intel codename Nehalem

Westmere

CLMUL, AES, XSAVE,
SSE4.2, SSE4.1, SSSE3, SSE3,
SSE2, SSE, MMX, FPU, SMM,
Prot, Priv

Intel codename Westmere

Sandybridge

AVX, CLMUL, AES, XSAVE,

SSE4.2, SSE4.1, SSSE3, SSE3,

SSE2, SSE, MMX, FPU, SMM,
Prot, Priv

Intel codename Sandy Bridge

Venice

SSE3, SSE2, SSE, 3DNow,
MMZX, FPU, SMM, Prot, Priv

AMD codename Venice

K10, Phenom, Family10h

SSE4a, SSE3, SSE2, SSE,
3DNow, MMX, FPU, SMM,
Prot, Priv

AMD codename K10

Bulldozer

SSEbS, SSE4a, SSE3, SSE2, SSE,
3DNow, MMX, FPU, SMM,
Prot, Priv

AMD codename Bulldozer

114

19.3. REGISTERS

19.3 Registers

The 64-bit x86 register set consists of 16 general purpose registers, only 8 of which are available in 16-bit and
32-bit mode. The core eight 16-bit registers are AX, BX, CX, DX, SI, DI, BP, and SP. The least significant
8 bits of the first four of these registers are accessible via the AL, BL, CL, and DL in all execution modes.
In 64-bit mode, the least significant 8 bits of the other four of these registers are also accessible; these are
named SIL, DIL, SPL, and BPL. The most significant 8 bits of the first four 16-bit registers are also available,
although there are some restrictions on when they can be used in 64-bit mode; these are named AH, BH,
CH, and DH.

The 80386 extended these registers to 32 bits while retaining all of the 16-bit and 8-bit names that were
available in 16-bit mode. The new extended registers are denoted by adding a E prefix; thus the core eight
32-bit registers are named EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP. The original 8-bit and 16-bit
register names map into the least significant portion of the 32-bit registers.

64-bit long mode further extended these registers to 64 bits in size by adding a R prefix to the 16-bit
name; thus the base eight 64-bit registers are named RAX, RBX, etc. Long mode also added eight extra
registers named numerically r8 through r15. The least significant 32 bits of these registers are available via
a d suffix (r8d through r15d), the least significant 16 bits via a w suffix (r8w through r15w), and the least
significant 8 bits via a b suffix (r8b through r15b).

Pucynok 19.1 summarizes the full 64-bit x86 general purpose register set.

Puc. 19.1 x86 General Purpose Registers

Not modified for 8-bit operands
Not modified for 16-bit operands

Register ' Zero-extended for Low

encoding 32-bit operands 8-bit 16-bit 32-bit 64-bi
0 AHT AL AX EAX RAX
3 BHt BL BX EBX RBX
1 CHt CL CX ECX RCX
2 DHt DL DX EDX RDX
6 SILE Sl ESI RSI
7 DILt DI EDI RDI
5 BPLt BP EBP RBF
4 SPL% SP ESP RS
8 R8B | R8W R8D R8
9 R9B | R9W R9D R9
10 R10B | R10W R10D R
11 R11B | R11W R11D R1:
12 R12B | R12wW R12D R
13 R13B | R13W R13D R
14 R14B | R14W R14D Rl
15 R15B | R15W R15D R1t

63 32 31 16 15 8 7 0
T Not legd with REX prefix T Requires REX prefix

19.4 Segmentation

115

Yacro VIII

Index

117

[Ipenmernniil yKazaTeib

1=, 39

* operator, 24

+ modifier, 34

-+ operator
binary, 24
unary, 24

- operator
binary, 24
unary, 24

--mapfile, 67

-P, 41

-f, 45

..@, 34

..@ symbol prefix, 26

..got, 74, 77
..gotoff, 74
..gotpce, 74
..gotpcrel, 77
.plt, 74, 77
..sym, 74, 77
.COM, 65
.SYS, 65
.comment, 72
.nolist, 37
.pdata, 87
xdata, 87
/ operator, 24
// operator, 24
;17
<, 39
<< operator, 24
<=, 39
<>, 39
=, 39
==, 39
>, 39
>=.39
>> operator, 24
7,18
[MAP], 67
$
npedukc, 17
here, 23
prefix, 22
$$, 24, 74
% operator, 24
%+, 31
%+1, 37
%-1, 37
%0, 35
%3, 42
%8, 42

%%, 34

%% operator, 24
%assign, 31
%clear, 44
%define, 29
Yhelif, 38, 39
%elifctx, 39
%elifdef, 38
%elifid, 40
%elifidn, 39
%elifidni, 39
%elifmacro, 38
%elifnctx, 39
%elifndef, 38
%elifnid, 40
%elifnidn, 39
%elifnidni, 39
%elifnmacro, 38
%elifnnum, 40
%elifnstr, 40
%elifnum, 40
%elifstr, 40
%else, 38
%endrep, 40
%error, 40
Y%exitrep, 41
Y%iassign, 31
%idefine, 29
%%if, 38, 39
%ifetx, 39, 43
%pitdef, 38
%ifid, 39
%ifidn, 39
%ifidni, 39
%ifmacro, 38
Pifnetx, 39
ifndef, 38
%%ifnid, 40
%ifnidn, 39
P%ifnidni, 39
%ifnmacro, 38
%ifnnum, 40
Poifnstr, 40
%ifnum, 39
%ifstr, 39
%imacro, 32
%include, 41
%macro, 32
%pop, 42
%push, 42
%rep, 19, 40
Y%repl, 43
%rotate, 35

119

NPEAMETHBIN YKABATE/Ib

%strlen, 32 ABS, 21, 50
Posubstr, 32 ABSOLUTE, 51
%undef, 31 addition, 24
Y%xdefine, 30 after % sign, 37
Y%xidefine, 30 algebra, 20
& operator, 24 ALIGN, 46, 65
&&, 39 code, 111
"~ operator, 24 ALIGNB, 46
"7, 39 alignment
_ _FILE , 45 code, 111
~ LINE ,45 of common variables, 74
__OUTPUT_ FORMAT 45 alignment in elf, 74
__SECT__, 50,51 amd64, 77, 111
__YASM BUILD 44 amdnop, 112
__YASM MAJOR_ .44 arbitrary numeric expressions, 39
~_YASM MINOR_ , 44 around macro parameters, 33
~_YASM OBJFMT 45 Assembler Directives, 49
~_YASM SUBMINOR , 44 assembly passes, 25
__YASM VERSION ID ., 44 AT, 46
__YASM VER__, 44
Bunapunie daiibr, 19 B
Omnepanpr, 17 basicnop, 112
[TosTopenmue, 19 bin, 65
YHUCJIOBbIE KOHCTAHTHI, 18 binary, 22, 24
3 PEKTUBHBIMI aapecaMu, 18 Binary origin, 65
MHUIHAJIU3UPOBaHHOE, 18 Bit Shift, 24
KapTUHOK, 19 BITS, 49
KPUTUYIECKUM BbIpakenueM, 19 bitwise AND, 24
KPUTHYECKOE BbIparkeHue, 18 bitwise OR, 24
MakKpocax, 19 bitwise XOR, 24
My3BIKH, 19 Block IFs, 43
HeMHUIUAJIU3UpoBaHHoe, 18 braces
omepanma, 17 after % sign, 37
IJIaBaloNas 3amnsaras, 18 around macro parameters, 33
npeduke, 17
npeduKchl pa3mepa ajpeca, 17 C
mpenporieccopa, 19 CALL FAR, 25
HCEeBIO-MHCTPYKIIAMH, 18 case sensitive, 29-31
pa3BepHyTHIE, 19 case-insensitive, 39
CHMBOJIbHBIE KOHCTAHTSHI, 18 case-sensitive, 33
comporeccopa, 18 changing sections, 50
CTPOKOBBIE KOHCTAHTHI, 18 Character Constants, 22
3aMembl cerMenTa, 17 circular references, 29
| operator, 24 code, 111
I, 39 CodeView, 101
~ operator, 24 COFF
16-bit mode debugging, 105
versus 32-bit mode, 49 coff, 69
32-bit, 85 COMMON, 52
32-bit mode Common Object File Format, 69
versus 64-bit mode, 49 common variables, 52
32-bit shared libraries, 74 alignment in elf, 74
64-bit, 77, 87 Concatenating Macro Parameters, 36
64-bit shared libraries, 77 Condition Codes as Macro Parameters, 37
Conditional Assembly, 38
A conditional-return macro, 37

120

NPEIMETHBIN YKABATEJIb

Constants, 22

constants, 23

Context Stack, 42, 43

context stack, 39
Context-Local Labels, 42
Context-Local Single-Line Macros, 42
counting macro parameters, 35
CPU, 53

CPUID, 23

creating contexts, 42

critical expression, 32, 51
Critical Expressions, 25

cvg, 101

D

data, 73

DB, 18, 23

DD, 18, 23

DDQ, 18

DDQWORD, 18

debugging, 103, 105
Declaring Structure, 45
DEFAULT, 21, 50

default, 73

Default Macro Parameters, 35
Defining Sections, 50
directives, 71

Disabling Listing Expansion, 37
division, 24

DO, 18

DQ, 18, 23
DT, 18, 23
DUP, 19
DW, 18, 23
DWARF, 103
dwarf2, 103
DWORD, 18
E

effective address, 20
effective-address, 26
ELF
32-bit shared libraries, 74
64-bit shared libraries, 77
debugging, 103, 105
elf, 71, 77
directives, 71
elf32, 71
elf64, 77
SECTION, 71
symbol size, 72
symbol type, 72
weak reference, 73
elf32, 71
elf64, 77
ENDSTRUC, 45, 51

EQU, 19, 26

exact text identity, 39

Executable and Linkable Format, 71
64-bit, 77

Exporting Symbols, 52

Expressions, 23

Extended Dynamic Object, 95

EXTERN, 52

F

far pointer, 25

Flash, 65

Flat-Form Binary, 65

floating-point
constants, 23

FOLLOWS, 65

format-specific directives, 49

forward references, 26

FreeBSD, 71

function, 73

G

gdb, 103, 105

GLOBAL, 52, 73

global offset table, 74

GOT, 74, 77

Greedy Macro Parameters, 34
groups, 25

H

here, 23
hex, 22
hidden, 73

I

IDENT, 72

IEND, 46

Immediates, 21
Importing Symbols, 52
INCBIN, 19, 23
Including Other Files, 41
infinite loop, 24
Instances of Structures, 46
Intel number formats, 23
intelnop, 112

internal, 73

ISTRUC, 46

iterating over macro parameters, 35

L
label prefix, 26
library, 73
Linux

elf, 71, 77
little-endian, 23
LMA, 65

Local Labels, 26

121

NPEAMETHBIN YKABATE/Ib

logical AND, 39 pre-define, 30
logical OR, 39 precedence, 24
logical XOR, 39 preferred, 24
prefix, 22
M Preprocessor Loops, 40
Mac OSX, 79, 81 Preprocessor Variables, 31
Mach-O, 79, 81 primitive directives, 49
macho procedure linkage table, 75, 77
macho32, 79 Processor Mode, 49
macho64, 81 protected, 73
macho32, 79 PUBLIC, 52
macho64, 81 pure binary, 65
macro processor, 29
Macro-Local Labels, 34 Q
Map file, 67 QWORD, 18
memory reference, 20
modulo operators, 24 R
multi-line macro existence, 38 rdf, 83
Multi-Line Macros, 32 RDOFF, 83
multi-line macros, 33 REL, 21, 50
multiplication, 24 relational operators, 39
multipush, 36 Relocatable Dynamic Object File Format, 83
relocations
N PIC-specific, 74, 77
NOP, 111 removing contexts, 42
NOSPLIT, 20 renaming contexts, 43
Numeric Constants, 22 repeating code, 40
RESB, 18, 26
O RESD, 18
orphan-labels, 17 RESDQ, 18
object, 73 RESO, 18
octal, 22 RESQ, 18
of common variables, 74 REST, 18
of symbols, 72, 73 RESW, 18
omitted parameters, 35 REX, 49
one’s complement, 24 RIP, 21
operators, 24 Rotating Macro Parameters, 35
ORG, 65
Origin, 65 S
overlapping segments, 25 searching for include files, 41
overloading SECTION, 50, 71
multi-line macros, 33 section.length, 67
single-line macros, 30 section.start, 67
OWORD, 18 section.vstart, 67
SEG, 24
P segment address, 24
padding, 111 segmentation
paradox, 25 x86, 115
passes, 25 segments, 24
PE, 85 shift command, 35

PE32+4-, 87 signed division, 24

period, 26 signed modulo, 24

PIC, 74, 77 single-line macro existence, 38
PIC-specific, 74, 77 Single-line macros, 29

PLT, 75, 77 single-line macros, 30
Position-Independent Code, 74, 77 SIZE, 72

122

NPEAMETHBIN YKABATE/Ib

size
of symbols, 72, 73
Solaris x86, 71
Solaris x86-64, 77
specifying, 72, 73
square brackets, 20
stabs, 105
Standard Macros, 44
standardised section names, 50
STRICT, 25
String Constants, 23
String Handling in Macros, 32
String Length, 32
STRUC, 45, 51
structured exceptions, 87
Sub-strings, 32
subtraction, 24
switching between sections, 50
symbol size, 72
symbol sizes
specifying, 72, 73
symbol type, 72
symbol types
specifying, 72, 73

T

testing
arbitrary numeric expressions, 39
context stack, 39
exact text identity, 39
multi-line macro existence, 38
single-line macro existence, 38
token types, 39

TIMES, 19, 25

token types, 39

two-pass assembler, 25

TWORD, 18

TYPE, 72

type
of symbols, 72, 73

U

unary, 24

Unary Operators, 24
UnixWare, 71

unsigned division, 24
unsigned modulo, 24
unwind data, 87
USE16, 50

USE32, 50

USE64, 50
User-Defined Errors, 40
user-level assembler directives, 44
user-level directives, 49

\Y

VALIGN, 65
version control, 72

version number of Yasm, 44
versus 32-bit mode, 49
versus 64-bit mode, 49

VFOLLOWS, 65
Vista, 85
Vista x64, 87

Visual Studio, 85, 87
Visual Studio 2005, 101
Visual Studio 2008, 101

VMA, 65

W
WEAK, 73
weak reference, 73
Win32, 85
win32, 85
Win64, 87
win64, 87
Windows
32-bit, 85
64-bit, 87
Windows XP, 85

Windows XP x64, 87

WRT, 25, 74, 77

X
x64, 87

structured exceptions, 87

x86, 111, 115
xdf, 95

Y
Yasm Version, 44

123

	I Preface
	Introduction
	License
	Material Covered in this Book

	II Using Yasm
	 Yasm
	 yasm
	
	
	
	-a arch --arch=arch:
	-f format --oformat=format:
	-g debug --dformat=debug:
	-h --help:
	-L list --lformat=list: -
	-l listfile --list=listfile: -
	-m machine --machine=machine:
	-o filename --objfile=filename:
	-p parser --parser=parser:
	-r preproc --preproc=preproc:
	--version: Yasm

	
	-w:
	-Werror:
	-Wno-unrecognized-char:
	-Worphan-labels:
	-X style: /

	
	-D macro[=value]:
	-e --preproc-only:
	-I :
	-P filename:
	-U macro:

	
	 ()
	
	

	III NASM Syntax
	 NASM
	 NASM
	-
	DB :
	RESB :
	INCBIN:
	EQU:
	TIMES:

	Effective Addresses
	64-bit Displacements
	RIP Relative Addressing

	Immediate Operands
	Constants
	Numeric Constants
	Character Constants
	String Constants
	Floating-Point Constants

	Expressions
	|: Bitwise OR Operator
	ˆ: Bitwise XOR Operator
	&: Bitwise AND Operator
	<< and >>: Bit Shift Operators
	+ and -: Addition and Subtraction Operators
	*, /, //, % and %%: Multiplication and Division
	Unary Operators: +, -, ~ and SEG
	SEG and WRT

	STRICT: Inhibiting Optimization
	Critical Expressions
	Local Labels

	The NASM Preprocessor
	Single-Line Macros
	The Normal Way: %define
	Enhancing %define: %xdefine
	Concatenating Single Line Macro Tokens: %+
	Undefining macros: %undef
	Preprocessor Variables: %assign

	String Handling in Macros
	String Length: %strlen
	Sub-strings: %substr

	Multi-Line Macros
	Overloading Multi-Line Macros
	Macro-Local Labels
	Greedy Macro Parameters
	Default Macro Parameters
	%0: Macro Parameter Counter
	%rotate: Rotating Macro Parameters
	Concatenating Macro Parameters
	Condition Codes as Macro Parameters
	Disabling Listing Expansion

	Conditional Assembly
	%ifdef: Testing Single-Line Macro Existence
	%ifmacro: Testing Multi-Line Macro Existence
	%ifctx: Testing the Context Stack
	%if: Testing Arbitrary Numeric Expressions
	%ifidn and %ifidni: Testing Exact Text Identity
	%ifid, %ifnum, %ifstr: Testing Token Types
	%error: Reporting User-Defined Errors

	Preprocessor Loops
	Including Other Files
	The Context Stack
	%push and %pop: Creating and Removing Contexts
	Context-Local Labels
	Context-Local Single-Line Macros
	%repl: Renaming a Context
	Example Use of the Context Stack: Block IFs

	Standard Macros
	__YASM_MAJOR__, etc: Yasm Version
	__FILE__ and __LINE__: File Name and Line Number
	__YASM_OBJFMT__ and __OUTPUT_FORMAT__: Output Object Format Keyword
	STRUC and ENDSTRUC: Declaring Structure Data Types
	ISTRUC, AT and IEND: Declaring Instances of Structures
	ALIGN and ALIGNB: Data Alignment

	NASM Assembler Directives
	Specifying Target Processor Mode
	BITS
	USE16, USE32, and USE64

	DEFAULT: Change the assembler defaults
	Changing and Defining Sections
	SECTION and SEGMENT
	Standardized Section Names
	The __SECT__ Macro

	ABSOLUTE: Defining Absolute Labels
	EXTERN: Importing Symbols
	GLOBAL: Exporting Symbols
	COMMON: Defining Common Data Areas
	CPU: Defining CPU Dependencies

	IV GAS Syntax
	TBD

	V Object Formats
	bin: Flat-Form Binary Output
	ORG: Binary Origin
	bin Extensions to the SECTION Directive
	bin Special Symbols
	Map Files

	coff: Common Object File Format
	elf32: Executable and Linkable Format 32-bit Object Files
	Debugging Format Support
	ELF Sections
	ELF Directives
	IDENT: Add file identification
	SIZE: Set symbol size
	TYPE: Set symbol type
	WEAK: Create weak symbol

	ELF Extensions to the GLOBAL Directive
	ELF Extensions to the COMMON Directive
	elf32 Special Symbols and WRT

	elf64: Executable and Linkable Format 64-bit Object Files
	elf64 Special Symbols and WRT

	macho32: Mach 32-bit Object File Format
	macho64: Mach 64-bit Object File Format
	rdf: Relocatable Dynamic Object File Format
	win32: Microsoft Win32 Object Files
	win64: PE32+ (Microsoft Win64) Object Files
	win64 Extensions to the SECTION Directive
	win64 Structured Exception Handling
	x64 Stack, Register and Function Parameter Conventions
	Types of Functions
	Frame Function Structure
	Stack Frame Details
	Yasm Primitives for Unwind Operations
	Yasm Macros for Formal Stack Operations

	xdf: Extended Dynamic Object Format

	VI Debugging Formats
	cv8: CodeView Debugging Format for VC8
	dwarf2: DWARF2 Debugging Format
	stabs: Stabs Debugging Format

	VII Architectures
	x86 Architecture
	Instructions
	NOP Padding

	Execution Modes and Extensions
	CPU Options

	Registers
	Segmentation

	VIII Index
	

